
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#25: OldSQL vs. NoSQL vs. NewSQL

CMU SCS

OLTP vs. OLAP

• On-line Transaction Processing:

– Short-lived txns.

– Small footprint.

– Repetitive operations.

• On-line Analytical Processing:

– Long running queries.

– Complex joins.

– Exploratory queries.

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

The Boring Days (1990s)

• Microsoft forks Windows version of Sybase

code and creates SQL Server.

• MySQL released as a replacement for mSQL.

• Postgres gets SQL support.

• Illustra bought by Informix.

Faloutsos/Pavlo CMU SCS 15-415/615 4

CMU SCS

Internet Boom (2000s)

• New Internet start-ups hit the performance

and cost limits of “elephant” DBMSs.

• Early companies used custom middleware

to shard databases across multiple DBMSs.

• Google was a pioneer in developing non-

relational DBMS architectures.

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

MapReduce

• Simplified parallel computing paradigm for

large-scale data analysis.

• Originally proposed by Google in 2004.

• Hadoop is the current leading open-source

implementation.

Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

Calculate total order amount per day after Jan 1st.

MapReduce Example

Faloutsos/Pavlo CMU SCS 15-415/615 7

Reduce Workers

2009-03-01

$10.00

$25.00

$53.00

2009-03-02

$30.00

$85.00

$93.00

2009-03-03

$44.00

$62.00

$69.00

 Map Output Map Workers

2009-03-01

$53.00

2009-03-02

$93.00

2009-03-03

$69.00

ReduceOutput

DATE AMOUNT

2009-03-02 $10.00

2007-12-13 $25.00

2008-04-19 $53.00

2008-01-19 $12.00

2008-05-20 $45.00

2009-03-21 $99.00

2009-01-18 $15.00

DATE AMOUNT

2009-03-02 $10.00

2007-12-13 $25.00

2008-04-19 $53.00

2008-01-19 $12.00

2008-05-20 $45.00

2009-03-21 $99.00

2009-01-18 $15.00

MAP(key, value) {
 if (key >= “2009-01-01”) {
 output(key, value);
 }
}

REDUCE(key, values) {
 sum = 0;
 while (values.hasNext()) {
 sum += values.next();
 }
 output(key, sum);
}

CMU SCS

What MapReduce Does Right

• Since all intermediate results are written to

HDFS, if one node crashes the entire query

does not need to be restarted.

• Easy to load data and start running queries.

• Great for semi-structured data sets.

Faloutsos/Pavlo CMU SCS 15-415/615 8

CMU SCS

What MapReduce Did Wrong

• Have to parse/cast values every time:

– Multi-attribute values handled by user code.

– If data format changes, code must change.

• Expensive execution:

– Have to send data to executors.

– A simple join requires multiple MR jobs.

Faloutsos/Pavlo CMU SCS 15-415/615 9

CMU SCS

Join Example

• Find sourceIP that generated most

adRevenue along with its average

pageRank.

10

CMU SCS

Join Example – SQL

Faloutsos/Pavlo CMU SCS 15-415/615 11

SELECT INTO Temp sourceIP,
 AVG(pageRank) AS avgPageRank,
 SUM(adRevenue) AS totalRevenue
 FROM Rankings AS R, UserVisits AS UV
 WHERE R.pageURL = UV.destURL
 AND UV.visitDate BETWEEN “2000-01-15” AND “2000-01-22”
 GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank
 FROM Temp ORDER BY totalRevenue DESC LIMIT 1;

CMU SCS

Join Example – MapReduce

Faloutsos/Pavlo CMU SCS 15-415/615 12

Phase 1:
Filter

Phase 2:
Aggregation

Phase 3:
Search

Map:

Emit all records for

Rankings.

Filter UserVisits data.

Reduce:

Compute cross product.

Map:

Emit all tuples (i.e.,

passthrough)

Reduce:

Compute avg pageRank

for each sourceIP.

Map:

Emit all tuples (i.e.,

passthrough)

Reduce:

Scan entire input and emit

the record with greatest

adRevenue sum.

CMU SCS

Join Example – Results

• Find sourceIP that generated most

adRevenue along with its average

pageRank.

13
32.0 35.4 55.0 29.2 29.4 31.9

0

200

400

600

800

1000

1200

1400

25 nodes 50 nodes 100 nodes

Hadoop Vertica DBMS-X

CMU SCS

Distributed Joins Are Hard

• Assume tables are horizontally partitioned:

– Table1 Partition Key → table1.key

– Table2 Partition Key → table2.key

• Q: How to execute?

• Naïve solution is to send all partitions to a

single node and compute join.

Faloutsos/Pavlo CMU SCS 15-415/615 14

SELECT * FROM table1, table2
 WHERE table1.val = table2.val

CMU SCS

Semi-Joins

• First distribute the join attributes between

nodes and then recreate the full tuples in the

final output.

– Send just enough data from each table to

compute which rows to include in output.

• Lots of choices make this problem hard:

– What to materialize?

– Which table to send?

Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU SCS

MapReduce in 2015

• Database Connectors.

• SQL/Declarative Query Support.

• Table Schemas.

• Column-oriented storage.

Faloutsos/Pavlo CMU SCS 15-415/615 16

CMU SCS

Column Stores

• Store tables as sections of columns of data

rather than as rows of data.

• Only scan the columns that a query needs.

• Allows for amazing compression ratios.

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Column Stores

Faloutsos/Pavlo CMU SCS 15-415/615 18

sid name login age gpa sex

1001 Faloutsos christos@cs 45 4.0 M

1002 Bieber jbieber@cs 21 3.9 M

1003 Tupac shakur@cs 26 3.5 M

1004 Ke$sha kesha@cs 22 4.0 F

1005 LadyGaGa gaga@cs 24 3.5 F

1006 Obama obama@cs 50 3.7 M

SELECT sex, AVG(GPA) FROM student
 GROUP BY sex

Row-oriented Storage
<sid,name,login,age,gpa,sex>

<sid,name,login,age,gpa,sex>

<sid,name,login,age,gpa,sex>

<sid,name,login,age,gpa,sex>

<sid,name,login,age,gpa,sex>

<sid,name,login,age,gpa,sex>

<sid,name,login,age,gpa,sex>

CMU SCS

Column Stores

Faloutsos/Pavlo CMU SCS 15-415/615 19

sid name login age gpa sex

1001 Faloutsos christos@cs 45 4.0 M

1002 Bieber jbieber@cs 21 3.9 M

1003 Tupac shakur@cs 26 3.5 M

1004 Ke$sha kesha@cs 22 4.0 F

1005 LadyGaGa gaga@cs 24 3.5 F

1006 Obama obama@cs 50 3.7 M

SELECT sex, AVG(GPA) FROM student
 GROUP BY sex

Column-oriented Storage

sid name login age gpa sex

CMU SCS

Column Stores

• Delay materializing a record for as long as

possible inside of the DBMS.

• Pre-sorting can improve compression:

– Example: Run-length Encoding

• Inserts/Updates/Deletes are harder…

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU SCS

Column Store Systems

• Many column-store DBMSs

– Examples: Vertica, Sybase IQ, MonetDB

• Hadoop storage library:

– Example: Parquet, RCFile

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU SCS

The Rise of NoSQL (2000s)

• Developers spend time writing middleware

rather than working on core applications.

• Google created a distributed DBMS called

BigTable in 2004:

– It used a GET/PUT API instead of SQL.

– No support for txns.

• Newer systems have been created that

follow BigTable’s anti-relational spirit.

Faloutsos/Pavlo CMU SCS 15-415/615 22

CMU SCS

NoSQL Systems

Faloutsos/Pavlo CMU SCS 15-415/615 23

Documents Column-Family Key/Value

CMU SCS

NoSQL Drawbacks

• Developers write code to handle eventually

consistent data, lack of transactions, and

joins.

• Not all applications can give up strong

transactional semantics.

Faloutsos/Pavlo CMU SCS 15-415/615 24

CMU SCS

NewSQL (2010s)

• Next generation of relational DBMSs that

can scale like a NoSQL system but without

giving up SQL or txns.

Faloutsos/Pavlo CMU SCS 15-415/615 25

CMU SCS

Aslett White Paper

[Systems that] deliver the
scalability and flexibility
promised by NoSQL while
retaining the support for SQL
queries and/or ACID, or to
improve performance for
appropriate workloads.

26 Matt Aslett – 451 Group (April 4th, 2011)

https://www.451research.com/report-short?entityId=66963

CMU SCS

Wikipedia Article

A class of modern relational
database systems that provide
the same scalable
performance of NoSQL
systems for OLTP workloads
while still maintaining the
ACID guarantees of a
traditional database system.

27 Wikipedia (April 2015)

http://en.wikipedia.org/wiki/NewSQL

CMU SCS

NewSQL Systems

Faloutsos/Pavlo CMU SCS 15-415/615 28

Middleware MySQL Engines New Design

CMU SCS

NewSQL Implementations

• Distributed Concurrency Control

• Main Memory Storage

• Hybrid Architectures

– Support OLTP and OLAP in single DBMS.

• Query Code Compilation

Faloutsos/Pavlo CMU SCS 15-415/615 29

CMU SCS

Summary

GUARANTEES

SCALABILITY

WEAK
(None/Limited)

STRONG
(ACID)

LOW
(One Node)

HIGH
(Many Nodes)

