
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#23: Crash Recovery – Part 2

 (R&G ch. 18)

CMU SCS

Last Class

• Write-Ahead Log

• Checkpoints

• Logging Schemes

• Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

Crash Recovery

• Recovery algorithms are techniques to

ensure database consistency, transaction

atomicity and durability despite failures.

• Recovery algorithms have two parts:

– Actions during normal txn processing to ensure

that the DBMS can recover from a failure.

– Actions after a failure to recover the database to

a state that ensures atomicity, consistency, and

durability.

 Faloutsos/Pavlo CMU SCS 15-415/615 4

CMU SCS

fsync(2)

• Kernel maintains a buffer cache between

applications & disks.

– If you just call write(), there is no guarantee

that the data is durable on disk.

• Use fsync() to force the OS to flush all

modified in-core data to disk.

– This blocks the thread until it completes.

– Data may still live in on-disk cache but we

cannot control that.

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

Buffer Pool – Steal Policy

• Whether the DBMS allows an uncommitted

txn to overwrite the most recent committed

value of an object in non-volatile storage.

– STEAL: Is allowed.

– NO-STEAL: Is not allowed.

Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

Buffer Pool – Force Policy

• Whether the DBMS ensures that all updates

made by a txn are reflected on non-volatile

storage before the txn is allowed to commit:

– FORCE: Is enforced.

– NO-FORCE: Is not enforced.

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Write-Ahead Logging

Volatile Storage Non-Volatile Storage

A=99 B=5

WAL

Database

… …

WAL (Tail)

Buffer Pool

<T5 begin>
<T5, A, 99, 88>
<T5, B, 5, 10>
<T5 commit>

 ⋮

A=99 B=5

CMU SCS

Writing Log Records

• We don‟t want to write one record at a time

• How should we buffer them?

– Batch log updates (group commit).

• Page i can be written out only after the

corresponding log record has been flushed.

Faloutsos/Pavlo CMU SCS 15-415/615 9

CMU SCS

Memory Pinning

• The DBMS needs to be able restrict when

pages are flushed to disk.

• “Pinning” a page means that the buffer pool

manager is not allowed to flush that page.

– Think of it like a lock.

• NOTE: Block == Page

– I use these terms interchangeably.

– They mean the same thing.

Faloutsos/Pavlo CMU SCS 15-415/615 10

CMU SCS

Memory Pinning

• The DBMS un-pins a data page ONLY if all

the corresponding log records that modified

that page have been flushed to the log.

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

Memory Pinning

• Why not mlock() ?

Faloutsos/Pavlo CMU SCS 15-415/615 12

CMU SCS

Checkpoints

• Any txn that committed before

the checkpoint is ignored (T1).

• T2 + T3 did not commit before

the last checkpoint.

– Need to redo T2 because it

committed after checkpoint.

– Need to undo T3 because it did

not commit before the crash.

Faloutsos/Pavlo CMU SCS 15-415/615 13

WAL

<T1 begin>
<T1, A, 1, 2>
<T1 commit>
<T2 begin>
<T2, A, 2, 3>
<T3 begin>
<CHECKPOINT>
<T2 commit>
<T3, A, 3, 4>

 ⋮
CRASH!

CMU SCS

Summary

• Write-Ahead Log to handle loss of volatile

storage.

• Use incremental updates (i.e., STEAL, NO-

FORCE) with checkpoints.

• On recovery, make sure that:

– Committed txns are atomic + durable.

– Uncommitted txns are removed.

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Today's Class – ARIES

• Algorithms for Recovery and Isolation

Exploiting Semantics

– Write-ahead Logging

– Repeating History during Redo

– Logging Changes during Undo

Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU SCS

ARIES

• Developed at IBM during the early 1990s.

• Considered the “gold standard” in database

crash recovery.

– Implemented in DB2.

– Everybody else more or less

implements a variant of it.

Faloutsos/Pavlo CMU SCS 15-415/615 16

C. Mohan
IBM Fellow

CMU SCS

ARIES – Main Ideas

• Write-Ahead Logging:

– Any change is recorded in log on stable storage

before the database change is written to disk.

• Repeating History During Redo:

– On restart, retrace actions and restore database

to exact state before crash.

• Logging Changes During Undo:

– Record undo actions to log to ensure action is

not repeated in the event of repeated failures.

Faloutsos/Pavlo CMU SCS 15-415/615 18

CMU SCS

ARIES – Main Ideas

• Write Ahead Logging

– Fast, during normal operation

– Least interference with OS (i.e., STEAL, NO

FORCE)

• Fast (fuzzy) checkpoints

• On Recovery:

– Redo everything.

– Undo uncommitted txns.

Faloutsos/Pavlo CMU SCS 15-415/615 19

CMU SCS

Today‟s Class

• Log Sequence Numbers

• Normal Commit & Abort Operations

• Fuzzy Checkpointing

• Recovery Algorithm

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU SCS

WAL Records

• We‟re going to extend our log record format

from last class to include additional info.

• Every log record has a globally unique log

sequence number (LSN).

• Q: Why do we need it?

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU SCS

Log Sequence Number

Faloutsos/Pavlo CMU SCS 15-415/615 22

Name Where Definition

LSN – Log sequence number

flushedLSN RAM Last LSN on log (disk).

pageLSN @pagei Latest update to pagei

recLSN @pagei Earliest update to pagei

lastLSN Tj Latest action of Tj

Master Record Disk LSN of latest checkpoint

CMU SCS

Writing Log Records

• Each data page contains a pageLSN.

– The LSN of the most recent update to that page.

• System keeps track of flushedLSN.

– The max LSN flushed so far.

• For a page i to be written, must flush log at

least to the point where:

– pageLSNi ≤ flushedLSN

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

Writing Log Records

Volatile Storage Non-Volatile Storage

WAL

Database

WAL (Tail)

Buffer Pool

017:<T5 begin>
018:<T5, A, 99, 88>
019:<T5, B, 5, 10>
020:<T5 commit>

 ⋮

Master Record flushedLSN

pageLSN recLSN

A=99 B=5 C=12

pageLSN recLSN

A=99 B=5 C=12

Safe to unpin because
pageLSN ≤ flushedLSN

?

Log Sequence Numbers Log Sequence Numbers

CMU SCS

Writing Log Records

Volatile Storage Non-Volatile Storage

WAL

Database

WAL (Tail)

Buffer Pool

017:<T5 begin>
018:<T5, A, 99, 88>
019:<T5, B, 5, 10>
020:<T5 commit>

 ⋮

Master Record flushedLSN

pageLSN recLSN

A=99 B=5 C=12

pageLSN recLSN

A=99 B=5 C=12

Not safe to unpin because
pageLSN > flushedLSN

?

CMU SCS

Writing Log Records

• LSNs: Written for each log record.

• pageLSN: Stored in each page in database.

• flushedLSN: In-Memory only.

Faloutsos/Pavlo CMU SCS 15-415/615 26

CMU SCS

Today‟s Class

• Log Sequence Numbers

• Normal Commit & Abort Operations

• Fuzzy Checkpointing

• Recovery Algorithm

Faloutsos/Pavlo CMU SCS 15-415/615 27

CMU SCS

Normal Execution

• Series of reads & writes, followed by

commit or abort.

• Assumptions:

– Disk writes are atomic.

– Strict 2PL.

– STEAL + NO-FORCE buffer management,

with Write-Ahead Logging.

Faloutsos/Pavlo CMU SCS 15-415/615 28

We do extra stuff to deal with
non-atomic writes (e.g.,
MySQL‟s doublewrite).

CMU SCS

Transaction Commit

• Write commit record to log.

• All log records up to txn‟s commit record

are flushed to disk.

– Note that log flushes are sequential,

synchronous writes to disk.

– Many log records per log page.

• When the commit succeeds, write an TXN-

END record to log.

Faloutsos/Pavlo CMU SCS 15-415/615 29

CMU SCS

Transaction Commit – Example

Volatile Storage Non-Volatile Storage

WAL

Database

WAL (Tail)

Buffer Pool

Master Record flushedLSN

pageLSN recLSN

A=99 B=5 C=12

pageLSN recLSN

A=99 B=5 C=12

012:<T4 begin>
013:<T4, A, 99, 88>
014:<T4, B, 5, 10>
015:<T4 commit>
 ⋮
016:<T4 txn-end>

flushedLSN = 015

We can trim the in-memory
log up to flushedLSN

CMU SCS

Transaction Commit

• Q: Why not flush the dirty pages too?

• A: Speed! This is why we use NO-FORCE

– Example: One txn changes 100 tuples…

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU SCS

Transaction Abort

• Aborting a txn is actually a special case of

the ARIES undo operation applied to only

one transaction.

• Add another field to our log records:

– prevLSN: The previous LSN for the txn.

– This maintains a linked-list for each txn that

makes it easy to walk through its records.

Faloutsos/Pavlo CMU SCS 15-415/615 32

CMU SCS

Transaction Abort – Example

Volatile Storage Non-Volatile Storage

WAL

Database

WAL (Tail)

Buffer Pool

Master Record flushedLSN

pageLSN recLSN

A=99 B=5 C=12

pageLSN recLSN

A=99 B=5 C=12

011|nil:<T4 begin>
012|011:<T4, A, 99, 88>
013|010:<T3, B, 5, 10>
014|012:<T4 abort>
 ⋮
015|014:<T4 txn-end>

LSN | prevLSN

Important: We need to
record what steps we
took to undo the txn.

CMU SCS

Compensation Log Records

• A CLR describes the actions taken to undo

the actions of a previous update record.

– It has all the fields of an update log record plus

the undoNext pointer (i.e., the next-to-be-

undone LSN).

• CLRs are added to log like any other record.

Faloutsos/Pavlo CMU SCS 15-415/615 34

CMU SCS

Transaction Abort – CLR Example

Faloutsos/Pavlo CMU SCS 15-415/615 35

T
I
M

E

LSN prevLSN TxnId Type Object Before After

001 nil T1 BEGIN - - -

002 001 T1 UPDATE A 30 40

⋮

011 002 T1 ABORT - - -

CMU SCS

Transaction Abort – CLR Example

Faloutsos/Pavlo CMU SCS 15-415/615 36

T
I
M

E

LSN prevLSN TxnId Type Object Before After

001 nil T1 BEGIN - - -

002 001 T1 UPDATE A 30 40

⋮

011 002 T1 ABORT - - -

⋮

026 011 T1 CLR A 40 30

CMU SCS

Transaction Abort – CLR Example

Faloutsos/Pavlo CMU SCS 15-415/615 37

T
I
M

E

LSN prevLSN TxnId Type Object Before After undoNext

001 nil T1 BEGIN - - - -

002 001 T1 UPDATE A 30 40 -

⋮

011 002 T1 ABORT - - - -

⋮

026 011 T1 CLR A 40 30 001

The LSN of the next log
record to be undone.

CMU SCS

Abort Algorithm

• First, write an ABORT record on log

• Play back updates, in reverse order: for each

update

– Write a CLR entry

– Restore old value

• At end, write an END log record

• Notice: CLRs never need to be undone

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

Today‟s Class

• Log Sequence Numbers

• Normal Execution & Abort Operations

• Fuzzy Checkpointing

• Recovery Algorithm

Faloutsos/Pavlo CMU SCS 15-415/615 39

CMU SCS

(Non-Fuzzy) Checkpoints

• The DBMS halts everything when it takes a

checkpoint to ensure a consistent snapshot:

– Stop all transactions.

– Flushes dirty pages on disk.

• This is bad…

Faloutsos/Pavlo CMU SCS 15-415/615 40

CMU SCS

Better Checkpoints

• Allow txns to keep on running.

• Record internal system state as of the

beginning of the checkpoint.

– Active Transaction Table (ATT)

– Dirty Page Table (DPT)

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

Active Transaction Table (ATT)

• One entry per currently active txn.

– txnId: Unique txn identifier.

– status: The current “mode” of the txn.

– lastLSN: Most recent LSN written by txn.

• Entry removed when txn commits or aborts.

• Status Codes:

– R → Running

– C → Committing

– U → Candidate for Undo

42

CMU SCS

Dirty Page Table (DPT)

• One entry per dirty page currently in buffer

pool.

– recLSN: The LSN of the log record that first

caused the page to be dirty.

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Better Checkpoints

• At the first checkpoint, T2 is

still running and there are two

dirty pages (i.e., P10, P12).

• At the second checkpoint, T3

is active and there are two

dirty pages (i.e., P10, P33).

Faloutsos/Pavlo CMU SCS 15-415/615 44

WAL
<T1 start>
...
<T1 commit>
...
<T2, C, 100, 120>
<CHECKPOINT
 ATT={T2},
 DPT={P10,P12}>
<T3 start>
<T2 commit>
<T3, A, 200, 400>
<CHECKPOINT
 ATT={T3},
 DPT={P10,P33}>
<T3, B, 10, 12>

CMU SCS

Fuzzy Checkpoints

• Specifically, write to log:

– BEGIN-CHECKPOINT: Indicates start of checkpoint

– END-CHECKPOINT: Contains ATT + DPT.

• The “fuzzy” part is because:

– Other txns continue to run; so these tables

accurate only as of the time of the BEGIN-

CHECKPOINT record.

– No attempt to force dirty pages to disk;

Faloutsos/Pavlo CMU SCS 15-415/615 45

CMU SCS

Fuzzy Checkpoints

• The LSN of the BEGIN-

CHECKPOINT record is written

to the Master Record entry.

• Any txn that starts after the

checkpoint is excluded from

the txn table listing.

Faloutsos/Pavlo CMU SCS 15-415/615 46

WAL
<T1 start>
...
<T1 commit>
...
<T2, C, 100, 120>
<BEGIN-CHECKPOINT>
<T3 start>
<END-CHECKPOINT
 ATT={T2},
 DPT={P10,P12}>
<T2 commit>
<T3, A, 200, 400>
<BEGIN-CHECKPOINT>
<T3, B, 10, 12>
<END-CHECKPOINT
 ATT={T3},
 DPT={P10,P33}>

CMU SCS

Fuzzy Checkpoints

• Q: Why do we need store the LSN of most

recent checkpoint record on disk in the

Master Record?

• A: So that we know where to start from on

recovery.

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

Big Picture

Volatile Storage Non-Volatile Storage

WAL

Database

WAL (Tail)
<T5 begin>
<T5, A, 99, 88>
<T5, B, 5, 10>
<T5 commit>

 ⋮

Buffer Pool DPT

ATT
TxnId Status lastLSN

T5 R 011

- - -

- - -

- - -

PageId recLSN

P100 001

P101 002

P102 003

P103 004

Master Record
flushedLSN

pageLSN recLSN

A=99 B=5 C=12

pageLSN recLSN

A=99 B=5 C=12

CMU SCS

Today‟s Class

• Log Sequence Numbers

• Normal Execution & Abort Operations

• Fuzzy Checkpointing

• Recovery Algorithm

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU SCS

ARIES – Recovery Phases

• Analysis: Read the WAL to identify dirty

pages in the buffer pool and active txns at

the time of the crash.

• Redo: Repeat all actions starting from an

appropriate point in the log.

• Undo: Reverse the actions of txns that did

not commit before the crash.

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

ARIES - Overview

51

• Start from last checkpoint found

via Master Record.

• Three phases.

– Analysis - Figure out which

txns committed or failed since

checkpoint.

– Redo all actions (repeat

history)

– Undo effects of failed txns.

Oldest log rec.
of txn active at

crash

Smallest
recLSN in dirty
page table after

Analysis

Last checkpoint

CRASH!

A R U

CMU SCS

Recovery – Analysis Phase

• Re-establish knowledge of state at

checkpoint.

– Examine ATT and DPT stored in the

checkpoint.

Faloutsos/Pavlo CMU SCS 15-415/615 52

CMU SCS

Recovery – Analysis Phase

• Scan log forward from checkpoint.

• TXN-END record: Remove txn from ATT.

• All other records:

– Add txn to ATT with status „UNDO‟

– On commit, change txn status to „COMMIT‟.

• For UPDATE records:

– If page P not in DPT, add P to DPT, set its

recLSN=LSN.

Faloutsos/Pavlo CMU SCS 15-415/615 53

CMU SCS

Recovery – Analysis Phase

• At end of the Analysis Phase:

– ATT tells the DBMS which txns were active at

time of crash.

– DPT tells the DBMS which dirty pages might

not have made it to disk.

Faloutsos/Pavlo CMU SCS 15-415/615 54

CMU SCS

Analysis Phase Example

Faloutsos/Pavlo CMU SCS 15-415/615 55

WAL
010:<BEGIN-CHECKPOINT>
 ⋮
020:<T96, A→P33, 10, 15>
 ⋮
030:<END-CHECKPOINT
 ATT={T96,T97},
 DPT={P20,P33}>
 ⋮
040:<T96 commit>
 ⋮
050:<T96 end>
 ⋮

CRASH!

LSN ATT DPT

010

020 (T96, U) (P33)

030 (T96,U), (T97,U) (P33), (P20)

040 (T96,C), (T97,U) (P33), (P20)

050 (T97,U) (P33), (P20)

(TxnId, Status)

Modify A in page P33

CMU SCS

Recovery – Redo Phase

• The goal is to repeat history to reconstruct

state at the moment of the crash:

– Reapply all updates (even aborted txns!) and

redo CLRs.

– We can try to avoid unnecessary reads/writes.

Faloutsos/Pavlo CMU SCS 15-415/615 56

CMU SCS

Recovery – Redo Phase

• Scan forward from the log record containing

smallest recLSN in DPT.

• For each update log record or CLR with a

given LSN, redo the action unless:

– Affected page is not in the DPT, or

– Affected page is in DPT but has recLSN>LSN, or

– Affected pageLSN (on disk) ≥ LSN

Faloutsos/Pavlo CMU SCS 15-415/615 57

Why start here?
All else has been flushed.

CMU SCS

Recovery – Redo Phase

• To redo an action:

– Reapply logged action.

– Set pageLSN to LSN.

– No additional logging, no forcing!

• At the end of Redo Phase, write TXN-END

log records for all txns with status „C‟ and

remove them from the ATT.

Faloutsos/Pavlo CMU SCS 15-415/615 58

CMU SCS

Recovery – Undo Phase

• Goal: Undo all txns that were active at the

time of crash („loser txns‟)

• That is, all txns with „U‟ status in the ATT

after the Analysis phase

• Process them in reverse LSN order using

the lastLSN’s to speed up traversal.

• Write a CLR for every modification.

Faloutsos/Pavlo CMU SCS 15-415/615 59

CMU SCS

Recovery – Undo Phase

• ToUndo={lastLSNs of „loser‟ txns}

• Repeat until ToUndo is empty:

– Pop largest LSN from ToUndo.

– If this LSN is a CLR and undoNext == nil, then

write an TXN-END record for this txn.

– If this LSN is a CLR, and undoNext != nil, then

add undoNext to ToUndo

– Else this LSN is an update. Undo the update,

write a CLR, add prevLSN to ToUndo.

Faloutsos/Pavlo CMU SCS 15-415/615 60

CMU SCS

Undo Phase Example

Faloutsos/Pavlo CMU SCS 15-415/615 61

LSN LOG

 00

 05

 10

 20

 30

 40

 45

 50

 60

Suppose that after end

of analysis phase we

have the following ATT:

TxnId Status lastLSN

T32 U

T41 U

prevLSNs

CMU SCS

Undo Phase Example

Faloutsos/Pavlo CMU SCS 15-415/615 62

LSN LOG

 00

 05

 10

 20

 30

 40

 45

 50

 60

undo
in reverse
LSN order

Suppose that after end

of analysis phase we

have the following ATT:

TxnId Status lastLSN

T32 U

T41 U

CMU SCS

Full Example

Faloutsos/Pavlo CMU SCS 15-415/615 63

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH

LSN LOG

 00

 05

 10

 20

 30

 40

 45

 50

 60

prevLSNs

Volatile Storage

DPT

ATT
TxnId Status lastLSN

- - -

- - -

- - -

PageId recLSN

- -

- -

- -

flushedLSN ToUndo

CMU SCS

Full Example

Faloutsos/Pavlo CMU SCS 15-415/615 64

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

LSN LOG
00,05

 10

 20

 30

40,45

 50

 60

 70

80,85

 Volatile Storage

DPT

ATT
TxnId Status lastLSN

T2 U 60

T3 U 50

- - -

PageId recLSN

P1 50

P3 08

P5 10

flushedLSN ToUndo

CMU SCS

Full Example

Faloutsos/Pavlo CMU SCS 15-415/615 65

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60, undoNext 20

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

LSN LOG
00,05

 10

 20

 30

40,45

 50

 60

 70

80,85

 Volatile Storage

DPT

ATT
TxnId Status lastLSN

T2 U 60

T3 U 50

- - -

PageId recLSN

P1 50

P3 08

P5 10

flushedLSN ToUndo

CMU SCS

Full Example

Faloutsos/Pavlo CMU SCS 15-415/615 66

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60, undoNext 20

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

LSN LOG
00,05

 10

 20

 30

40,45

 50

 60

 70

80,85

 Volatile Storage

DPT

ATT
TxnId Status lastLSN

T2 U 60

T3 U 50

- - -

PageId recLSN

P1 50

P3 08

P5 10

flushedLSN ToUndo

Flush WAL to disk!

CMU SCS

Crash During Restart!

Faloutsos/Pavlo CMU SCS 15-415/615 67

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60 , undoNext 20

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

LSN LOG
00,05

 10

 20

 30

40,45

 50

 60

 70

80,85

 Volatile Storage

X

CMU SCS

Crash During Restart!

Faloutsos/Pavlo CMU SCS 15-415/615 68

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60, undoNext 20

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

LSN LOG
00,05

 10

 20

 30

40,45

 50

 60

 70

80,85

 Volatile Storage

DPT

ATT
TxnId Status lastLSN

T2 U 70

- - -

- - -

PageId recLSN

P1 50

P3 08

P5 10

flushedLSN ToUndo

CMU SCS

Crash During Restart!

Faloutsos/Pavlo CMU SCS 15-415/615 69

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60, undoNext 20

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

 10

 20

 30

40,45

 50

 60

 70

80,85

90, 95 Volatile Storage

DPT

ATT
TxnId Status lastLSN

T2 U 70

- - -

- - -

PageId recLSN

P1 50

P3 08

P5 10

flushedLSN ToUndo

CMU SCS

Additional Crash Issues

• What happens if system crashes during the

Analysis Phase? During the Redo Phase?

• How do you limit the amount of work in the

Redo Phase?

– Flush asynchronously in the background.

• How do you limit the amount of work in the

Undo Phase?

– Avoid long-running txns.

Faloutsos/Pavlo CMU SCS 15-415/615 70

CMU SCS

Summary

• ARIES - main ideas:

– WAL (write ahead log), STEAL/NO-FORCE

– Fuzzy Checkpoints (snapshot of dirty page ids)

– Redo everything since the earliest dirty page;

undo „loser‟ transactions

– Write CLRs when undoing, to survive failures

during restarts

Faloutsos/Pavlo CMU SCS 15-415/615 71

CMU SCS

ARIES – Recovery Phases

• Analysis: Read the WAL to identify dirty

pages in the buffer pool and active txns at

the time of the crash.

• Redo: Repeat all actions starting from an

appropriate point in the log.

• Undo: Reverse the actions of txns that did

not commit before the crash.

Faloutsos/Pavlo CMU SCS 15-415/615 72

CMU SCS

Summary

• Additional concepts:

– LSNs identify log records; linked into

backwards chains per transaction (via

prevLSN).

– pageLSN allows comparison of data page and

log records.

– And several other subtle concepts: undoNext,

recLSN, etc)

Faloutsos/Pavlo CMU SCS 15-415/615 73

CMU SCS

Conclusion

• Recovery is really hard.

• Be thankful that you don‟t have to write it

yourself.

Faloutsos/Pavlo CMU SCS 15-415/615 74

