g CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#23: Crash Recovery — Part 2
(R&G ch. 18)

‘g CMU SCS

Last Class

« Write-Ahead Log
» Checkpoints

* Logging Schemes
« Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615

g CMU SCS

Crash Recovery

» Recovery algorithms are techniques to
ensure database consistency, transaction
atomicity and durability despite failures.

» Recovery algorithms have two parts:

— Actions during normal txn processing to ensure
that the DBMS can recover from a failure.

— Actions after a failure to recover the database to
a state that ensures atomicity, consistency, and
durability.

Faloutsos/Pavlo CMU SCS 15-415/615 4

g cMU scs
fsync(2)

« Kernel maintains a buffer cache between
applications & disks.

— If you just call write(), there is no guarantee
that the data is durable on disk.

« Use fsync() to force the OS to flush all
modified in-core data to disk.
— This blocks the thread until it completes.

— Data may still live in on-disk cache but we
cannot control that.

Faloutsos/Pavlo CMU SCS 15-415/615

CMU sCS

Buffer Pool — Steal Policy

» Whether the DBMS allows an uncommitted
txn to overwrite the most recent committed
value of an object in non-volatile storage.

— STEAL: Is allowed.

— NO-STEAL.: Is not allowed.

Faloutsos/Pavlo CMU SCS 15-415/615

‘g CMU SCS

Buffer Pool — Force Policy

» Whether the DBMS ensures that all updates
made by a txn are reflected on non-volatile
storage before the txn is allowed to commit:
— FORCE: Is enforced.

— NO-FORCE: Is not enforced.

Faloutsos/Pavlo CMU SCs 15-415/615

%g CcMU sCS
Write-Ahead Logging

e - N
WAL (Tail)
<T5 begin>
<T5, A, 99, 88>
<T5, B, 5, 10>
<T5 commit>

Buffer Pool

A=99 | B=5

Database

. J

Volatile Storage Non-Volatile Storage

CMU sCs

Writing Log Records

* We don’t want to write one record at a time
« How should we buffer them?
— Batch log updates (group commit).

« Page i can be written out only after the
corresponding log record has been flushed.

Faloutsos/Pavlo CMU SCS 15-415/615

g CcMU sCS - -
Memory Pinning

 The DBMS needs to be able restrict when
pages are flushed to disk.

* “Pinning” a page means that the buffer pool
manager is not allowed to flush that page.
— Think of it like a lock.
* NOTE: Block == Page
— | use these terms interchangeably.
— They mean the same thing.

Faloutsos/Pavlo CMU SCS 15-415/615 10

g CMU SCS

Memory Pinning

« The DBMS un-pins a data page ONLY if all
the corresponding log records that modified
that page have been flushed to the log.

Faloutsos/Pavlo CMU SCs 15-415/615 1

g CcMU sCS - -
Memory Pinning

* Why not mlock() ?

Faloutsos/Pavlo CMU SCS 15-415/615 12

g cMU scs
Checkpoints

WAL | . Any txn that committed before
<T1 begin> the checkpoint is ignored (T1).
T1 commit> e T2 + T3 did not commit before
the last checkpoint.

— Need to redo T2 because it
committed after checkpoint.

— Need to undo T3 because it did
not commit before the crash.

<CHECKPOINT>
<T2 commit>
<T3, A, 3, 4>

Faloutsos/Pavlo CMU SCS 15-415/615 13

g CMU SCS

Summary

» Write-Ahead Log to handle loss of volatile
storage.

 Use incremental updates (i.e., STEAL, NO-
FORCE) with checkpoints.

» On recovery, make sure that:
— Committed txns are atomic + durable.
— Uncommitted txns are removed.

Faloutsos/Pavlo CMU SCS 15-415/615 14

Vg cMU scs
Today's Class — ARIES

+ Algorithms for Recovery and Isolation
Exploiting Semantics
— Write-ahead Logging
— Repeating History during Redo
— Logging Changes during Undo

Faloutsos/Pavlo CMU SCs 15-415/615 15

g CMU sCS
ARIES

» Developed at IBM during the early 1990s.
* Considered the “gold standard” in database
crash recovery.
— Implemented in DB2.

— Everybody else more or less
implements a variant of it.

IBM Fellow

Faloutsos/Pavlo CMU SCS 15-415/615 16

CMU sCs

ARIES — Main Ideas

» Write-Ahead Logging:

— Any change is recorded in log on stable storage
before the database change is written to disk.

» Repeating History During Redo:

— On restart, retrace actions and restore database
to exact state before crash.

 Logging Changes During Undo:

— Record undo actions to log to ensure action is
not repeated in the event of repeated failures.

Faloutsos/Pavlo CMU SCS 15-415/615 18

CMU sCS

ARIES — Main Ideas

» Write Ahead Logging
— Fast, during normal operation

— Least interference with OS (i.e., STEAL, NO
FORCE)

» Fast (fuzzy) checkpoints

* On Recovery:
— Redo everything.
— Undo uncommitted txns.

Faloutsos/Pavlo CMU SCS 15-415/615 19

Vg cMu scs
Today’s Class

 Log Sequence Numbers

« Normal Commit & Abort Operations
» Fuzzy Checkpointing

 Recovery Algorithm

Faloutsos/Pavlo CMU SCS 15-415/615 20

% CMU SCS
WAL Records

* We’re going to extend our log record format
from last class to include additional info.

 Every log record has a globally unique log
sequence number (LSN).

* Q: Why do we need it?

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU sCs

Log Sequence Number

Name Where Definition

LSN — Log sequence number
flushedLSN RAM Last LSN on log (disk).
pageLSN @page; Latest update to page;
recLSN @page; Earliest update to page;
lastLSN T Latest action of T,

]

Master Record Disk LSN of latest checkpoint

Faloutsos/Pavlo CMU SCS 15-415/615 22

CMU sCS

Writing Log Records

 Each data page contains a pageLSN.
— The LSN of the most recent update to that page.
 System keeps track of flushedLSN.
— The max LSN flushed so far.
 For a page i to be written, must flush log at
least to the point where:
— pageLSN; < flushedLSN

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU sCs

Writing Log Records

Log Sequence Number§]

017 §<T5 begin>
018 §<T5, A, 99, 88>
019 §<T5, B, 5, 10>
020 §<T5 commit>

Buffer Pog

aster Record

Database

Volatile Storage

Non-Volatile Storage

Log Sequence Numbers]

CMU sCSs

Writing Log Records

WAL (Tail)

017:<T5 begin>
018:<T5, A, 99, 88>
019:<T5, B, 5, 10>
020:<T5 commit>

Buffer Pool
[pageLSN[JcLSN

00l R=K 1C=12

Not safe to unpin because}

~ 0
Master Record

pageLSN > flushedLSN

Database

Volatile Storage Non-Volatile Storage

CMU sCs

Writing Log Records

» LSNs: Written for each log record.
» pageLSN: Stored in each page in database.
* flushedLSN: In-Memory only.

Faloutsos/Pavlo CMU SCS 15-415/615

26

g CcMU sCS
Today’s Class

* Log Sequence Numbers

=) - Normal Commit & Abort Operations
» Fuzzy Checkpointing
» Recovery Algorithm

Faloutsos/Pavlo CMU SCS 15-415/615 27

‘g CMU SCS

Normal Execution

» Series of reads & wri
commit or abort. We do extra stuff to deal with

i non-atomic writes (e.g.,
« Assumptions: MySQL’s doublewrite).
— Disk writes are atomic.

— Strict 2PL.

— STEAL + NO-FORCE buffer management,
with Write-Ahead Logging.

Faloutsos/Pavlo CMU SCs 15-415/615 28

g CMU SCS

Transaction Commit

» Write commit record to log.
» All log records up to txn’s commit record
are flushed to disk.

— Note that log flushes are sequential,
synchronous writes to disk.

— Many log records per log page.
» When the commit succeeds, write an TXN-
END record to log.

Faloutsos/Pavlo CMU SCS 15-415/615 29

CMU sCs

Transaction Commit — Example

We can trim the in-memory
log up to flushedLSN
\

. 001:<T1 begin>

012:<T4 begin> 002:<T1, Ay 1, 2>
. 003:<T1 commit>
013:<T4, A, 99, 88> 004: <T2 begin>

i< > 005:<T2, A, 2, 3>
014:<T4, B, 5’. 1o 006:<T3 begin>

015:<T4 commit> 007: <CHECKPOINT>
) 008:<T2 commit>

009:<T3, A, 3, 4>

010:<T3, B, 4, 2>

016:<T4 txn-end>7 011: <73 comnit>

Database
Non-Volatile Storage

g CMU SCS

Transaction Commit

* Q: Why not flush the dirty pages too?

 A: Speed! This is why we use NO-FORCE
— Example: One txn changes 100 tuples...

Faloutsos/Pavlo CMU SCS 15-415/615 31

‘g CMU SCS

Transaction Abort

 Aborting a txn is actually a special case of
the ARIES undo operation applied to only
one transaction,

 Add another field to our log records:
— prevLSN: The previous LSN for the txn.

— This maintains a linked-list for each txn that
makes it easy to walk through its records.

Faloutsos/Pavlo CMU SCs 15-415/615 32

CMU sCSs

Transaction Abort — Example

LSN | prevLSN

WAL

<T4 begin>

012|011§<T4, A, 99, 88>

013|010§<T3, B, 5, 10>

014 | 0128 <T4 abort>

——
' end>r7

Important: We need to
record what steps we 7

flushedLSN

Database

Volatile Storage Non-Volatile Storage

g CMU SCS

Compensation Log Records

» A CLR describes the actions taken to undo
the actions of a previous update record.

— It has all the fields of an update log record plus
the undoNext pointer (i.e., the next-to-be-
undone LSN).

* CLRs are added to log like any other record.

Faloutsos/Pavlo CMU SCS 15-415/615 34

CMU sCS

Transaction Abort — CLR Example

LSN prevLSN Txnld Type Object Before After

001 |nil T1 |BEGIN

002 |01 [Tt |UPDATE [A 30 [40

ot [o02 |11 |ABORT |- |- |-

Faloutsos/Pavlo CMU SCS 15-415/615 35

CMU sCs

Transaction Abort — CLR Example

pre d pe Obje Before
001 | nil TL | BEGIN
002 | 001 T1 |UPDATE | A 30 40
011 |02 |11 [ABdRT |- . 4
026 [o11 |11 Jcr JA 40 30
Faloutsos/Pavlo CMU SCS 15-415/615 36

CMU sCSs

Transaction Abort — CLR Example

undoNext

LSN prevLSN Txnld Type Object Before After
i BEGIN

UPDATE | A 30 40

o ooz |11 |ABORT

02; o [11 Jar [A J4 [30 oot
/

The LSN of the next log
record to be undone.

]

Faloutsos/Pavlo CMU SCS 15-415/615 37

g CMU SCS

Abort Algorithm

First, write an ABORT record on log

Play back updates, in reverse order: for each
update

— Write a CLR entry

— Restore old value

At end, write an END log record

Notice: CLRs never need to be undone

Faloutsos/Pavlo CMU SCS 15-415/615 38

g CcMU sCS
Today’s Class

* Log Sequence Numbers

» Normal Execution & Abort Operations
=) . Fuzzy Checkpointing

» Recovery Algorithm

Faloutsos/Pavlo CMU SCS 15-415/615 39

CMU sCs

(Non-Fuzzy) Checkpoints

« The DBMS halts everything when it takes a
checkpoint to ensure a consistent snapshot:
— Stop all transactions.
— Flushes dirty pages on disk.

e This is bad...

Faloutsos/Pavlo CMU SCs 15-415/615 40

CMU sCSs

Better Checkpoints

« Allow txns to keep on running.
 Record internal system state as of the
beginning of the checkpoint.
— Active Transaction Table (ATT)
— Dirty Page Table (DPT)

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU sCs

Active Transaction Table (ATT)

« One entry per currently active txn.
— txnld: Unique txn identifier.
— status: The current “mode” of the txn.
— lastLSN: Most recent LSN written by txn.

« Entry removed when txn commits or aborts.
« Status Codes:

— R — Running

— C — Committing

— U — Candidate for Undo

42

CMU sCS

Dirty Page Table (DPT)

 One entry per dirty page currently in buffer
pool.

— recLSN: The LSN of the log record that first
caused the page to be dirty.

CMU sCs

Better Checkpoints

(WAL h

<T1 start>

* At the first checkpoint, T2 is
still running and there are two
dirty pages (i.e., P10, P12).

« At the second checkpoint, T3
Is active and there are two
dirty pages (i.e., P10, P33).

<T1 commit>

<T2, C, 100, 120>

CHECKPOINT
ATT={T2},
DPT={P10,P12}>

<T3 start>

<T2 commit>

<T3, A, 200, 400>

<CHECKPOINT
ATT={T3},
DPT={P10,P33}>

<T3, B, 10, 12>

4

G J
g CMU SCS - g CMU SCS -
Fuzzy Checkpoints Fuzzy Checkpoints
o _ (WAL A
« Specifically, write to log: <T1 start> * The LSN of the BEGIN-

— BEGIN-CHECKPOINT: Indicates start of checkpoint
— END-CHECKPOINT: Contains ATT + DPT.

* The “fuzzy” part is because:

— Other txns continue to run; so these tables
accurate only as of the time of the BEGIN-
CHECKPOINT record.

— No attempt to force dirty pages to disk;

Faloutsos/Pavlo CMU SCS 15-415/615 45

CHECKPOINT record is written
to the Master Record entry.

« Any txn that starts after the
checkpoint is excluded from
the txn table listing.

<T1 commit>

<72, C, 100, 120>
B N-L 0 KP
<T3 start>

<T2 commit;
<T3, A, 200, 400>
<BEGIN-CHECKPOINT>

<T3, B, 10, 12>
<END-CHECKPOINT
ATT={T3},

DPT={P10,P33}> 7

. J

Faloutsos/Pavlo

CMU SCs 15-415/615 46

g cMu scs
Fuzzy Checkpoints

* Q: Why do we need store the LSN of most
recent checkpoint record on disk in the
Master Record?

» A: So that we know where to start from on
recovery.

Faloutsos/Pavlo CMU SCS 15-415/615 47

g CMU SCS

Big Picture

WAL

<T1 begin>
<T1, A, 1, 2>
T1 commit>

e . N
WAL (Tail)
<T5 begin>
<T5, A, 99, 88>
<T5, B, 5, 10>
<T5 commit>

<T1 comm:
<12 begin>
<12, A, 2, 3>
<13 begin>
<CHECKPOINT>
<T2 commit>

Buffer Pool |

A=99| B=5 [C=12

pageLSN | recLSN

A=99 | B=5 | C=12

flushedLSN
Database

J . J

Volatile Storage Non-Volatile Storage

g CcMU sCS
Today’s Class

» Log Sequence Numbers
» Normal Execution & Abort Operations
» Fuzzy Checkpointing

m) - Recovery Algorithm

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU sCs

ARIES — Recovery Phases

« Analysis: Read the WAL to identify dirty
pages in the buffer pool and active txns at
the time of the crash.

» Redo: Repeat all actions starting from an
appropriate point in the log.

« Undo: Reverse the actions of txns that did
not commit before the crash.

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU sCS

ARIES - Overview

Oldest log rec. .
of txn active at ——

crash [3 A via Master Record.

« Three phases.
recLsnmgiry | & — Analysis - Figure out which
page table after txns committed or failed since

nalysis .
checkpoint.

: — Redo all actions (repeat
Last checkpoint -.- history)

l \ 2 — Undo effects of failed txns.

CRASH! —
AR U

« Start from last checkpoint found

51

‘g CMU SCS

Recovery — Analysis Phase

 Re-establish knowledge of state at
checkpoint.

— Examine ATT and DPT stored in the
checkpoint.

Faloutsos/Pavlo CMU SCs 15-415/615 52

g CMU SCS

Recovery — Analysis Phase

» Scan log forward from checkpoint.
o TXN-END record: Remove txn from ATT.
« All other records:

— Add txn to ATT with status ‘UNDO’

— On commit, change txn status to ‘COMMIT".
» For UPDATE records:

— If page P not in DPT, add P to DPT, set its
recLSN=LSN.

Faloutsos/Pavlo CMU SCS 15-415/615

53

g CMU SCS

Recovery — Analysis Phase

At end of the Analysis Phase:

— ATT tells the DBMS which txns were active at
time of crash.

— DPT tells the DBMS which dirty pages might
not have made it to disk.

Faloutsos/Pavlo CMU SCS 15-415/615 54

CMU sCS

Analysis Phase Example

Modify A in page P33

010:<BEGIN-C >

020:<796, [A-P33] 10, 15>

036 :<END-CHECKPOINT
ATT={T96,T97},
DPT={P20,P33}>

40:<T96 commit>
50:<T96 end>

CRASH!

(Txnld, Status)

4

Faloutsos/Pavlo CMU SCS 15-415/615 55

‘g CMU SCS

Recovery — Redo Phase

» The goal is to repeat history to reconstruct
state at the moment of the crash:

— Reapply all updates (even aborted txns!) and
redo CLRs.

— We can try to avoid unnecessary reads/writes.

Faloutsos/Pavlo CMU SCs 15-415/615 56

g CMU SCS
Recovery — Redo Phase

Why start here?
All else has been flushed.

 Scan forward ir [og record containing
smallest recLSN in DPT.

 For each update log record or CLR with a
given LSN, redo the action unless:
— Affected page is not in the DPT, or
— Affected page is in DPT but has recLSN>LSN, or
— Affected pageL.SN (on disk) > LSN

Faloutsos/Pavlo CMU SCS 15-415/615 57

g CMU SCS

Recovery — Redo Phase

» To redo an action:
— Reapply logged action.
— Set pageLLSN to LSN.
— No additional logging, no forcing!

» At the end of Redo Phase, write TXN-END
log records for all txns with status ‘C’ and
remove them from the ATT.

Faloutsos/Pavlo CMU SCS 15-415/615 58

g CMU SCS ‘g CMU SCS

Recovery — Undo Phase Recovery — Undo Phase
» Goal: Undo all txns that were active at the « ToUndo={lastLSNs of ‘loser’ txns}
time of crash (‘loser txns’) « Repeat until ToUndo is empty:
* That is, all txns with ‘U’ status in the ATT — Pop largest LSN from ToUndo.
after the Analysis phase — If this LSN is a CLR and undoNext == nil, then
« Process them in reverse LSN order using write an TXN-END record for this txn.
the lastLSN’s to speed up traversal. — If this LSN is a CLR, and undoNext != nil, then

add undoNext to ToUndo

— Else this LSN is an update. Undo the update,
write a CLR, add prevLSN to ToUndo.

Faloutsos/Pavlo CMU SCS 15-415/615 59 Faloutsos/Pavlo CMU SCs 15-415/615 60

» Write a CLR for every modification.

g CMU SCS g CMU SCS

Undo Phase Example Undo Phase Example
LSN . LOG LSN . LOG
Suppose that after end 00 4 Suppose that after end 00 4
of analysis phase we 05 4+ of analysis phase we 05 + —
have the following ATT: 10 < have the following ATT: 10 <
20 = 20 =+ _
Txnld Status lastLSN 30 4 Txnld Status lastLSN 30 - undo
ng Ua us las : prevLSNs ng Ua us las : _ i reverse
T4 U T4 U — [LSN order

Faloutsos/Pavlo CMU SCS 15-415/615 61 Faloutsos/Pavlo CMU SCS 15-415/615 62

g CMU SCS

lastLSN

\ J/

| flushedLSN || ToUndo

|

Volatile Storage

Faloutsos/Pavlo

Full Example
LSN. LOG

00 —-— begin_checkpoint
05 — end_checkpoint

10 -'— update: T1 writes P5
20 "‘ update T2 writes P3

prevLS

30 4+ Tlabort« — .

40 4+ CLR: Un@Tl‘LSN"iO

45 - T1End —*"

50 -'- update: T3 writes P1

60 — update: T2 writes P5
X CRASH

CMU SCS 15-415/615 63

Ns

‘g CMU SCS

& J

| flushedLSN ||

ToUndo

|

Volatile Storage

Faloutsos/Pavlo

Full Example

LSN LOG
00,05 —- begin_checkpoint, end_checkpoint

10 = update: T1 writes P5
20 - update@writes P3
30 — T1 abort
0,45 - CLR: Undo T1 LSN 10, T1 End
50 -~ update:I3)writes P1

60 +— update:@writes P5
3¢ CRASH, RESTART

CMU SCs 15-415/615 64

CMU sCSs

\ J/

l flushedL.SN H ToUndo

|

Volatile Storage

Faloutsos/Pavlo

Full Example

LSN LOG
00,05 — begin_checkpoint, end_checkpoint

10 = update: T1 writes P5
20 update@writes P3€——

30 - T1 abort
40,45 = CLR: Undo T1 LSN 10, T1 End
50 -~ update:I3)writes P1
60 +— update:@writes P5
3¢ CRASH, RESTART
70 = CLR: Undo T2 LSN 60, undoNext 20

CMU SCs 15-415/615 65

g CMU SCS

\ J

Volatile Storage

Faloutsos/Pavlo

Full Example

LSN LOG
00,05 — begin_checkpoint, end_checkpoint

10 = update: T1 writes P5
20 update@writes P3 ¢
30 —- T1 abort
40,45 - CLR: Undo T1 LSN 10, T1 End
50 —— update:T3)writes P1

60 +— update:@writes P5

1

X CRASH,RES[£1sh WAL to disk!
— CLR: Undo T

70

| flushedLSN || ToUndo | 80,85 — CLR: Undo T3 LSN 50, T3 end

CMU SCs 15-415/615 66

g CMU SCS

Crash During Restart!
LSN

00,05
10
20
30
40,45
50
60

70
80,85

Volatile Storage

Faloutsos/Pavlo

LOG

— begin_checkpoint, end_checkpoint
— update: T1 writes P5

. update T2 writes P3 €———
— T1 abort

~ CLR: Undo T1 LSN 10, T1 End

— update: T3 writes P1

— update: T2 writes P5

3 CRASH, RESTART

— CLR: Undo T2 LSN 60, undoNext 20
— CLR: Undo T3 LSN 50, T3 end

7

C™M

X CRASH, RESTART

U SCS 15-415/615 67

CMU sCs

Crash During Restart!

([ATT | LSN LOG
= 00,05 —- begin_checkpoint, end_checkpoint

10 = update: T1 writes P5
20 — updat rites P3

L 30 —- T1 abort

Y\ 40,45 — CLR: Undo T1 LSN 10, T1 End

([DPT o !

50 — update:

60 — update rites P5
3¢ CRASH, RESTART
70 =+ CLR: Undg

LSN 60, undoNext 20
| flushedLSN ” ToUndo I 80,85 = CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART

Volatile Storage

Faloutsos/Pavlo CMU SCs 15-415/615 68

CMU sCSs

Crash During Restart!

LOG

— begin_checkpoint, end_checkpoint
— update: T1 writes P5

. update T2 writes P3

— T1 abort

— CLR: Undo T1 LSN 10, T1 End

— update: T3 writes P1

— update: T2 writes P5

3 CRASH, RESTART

— CLR: Undo T2 LSN 60, undoNext 20
. CLR: Undo T3 LSN 50, T3 end

X CRASH, RESTART

(AaTT) LSN
lastLSN 00’05 =
10 -
20 i
. 30
40,45 -

(" DPT)
50
60 —
\.) 70 =
[flushedLSN][ToUndo | 80,85 =
\olatile Storage 90, 95 -

Faloutsos/Pavlo

C™M

— CLR: Undo T2 LSN 20, T2 end
U SCS 15-415/615 69

CMU sCs

Additional Crash Issues

» What happens if system crashes during the
Analysis Phase? During the Redo Phase?

» How do you limit the amount of work in the
Redo Phase?
— Flush asynchronously in the background.

» How do you limit the amount of work in the
Undo Phase?
— Avoid long-running txns.

Faloutsos/Pavlo CMU SCS 15-415/615 70

g CMU SCS

Summary

* ARIES - main ideas:
— WAL (write ahead log), STEAL/NO-FORCE
— Fuzzy Checkpoints (snapshot of dirty page ids)

— Redo everything since the earliest dirty page;
undo ‘loser’ transactions

— Write CLRs when undoing, to survive failures
during restarts

Faloutsos/Pavlo CMU SCS 15-415/615 71

CMU sCs

ARIES — Recovery Phases

« Analysis: Read the WAL to identify dirty
pages in the buffer pool and active txns at
the time of the crash.

» Redo: Repeat all actions starting from an
appropriate point in the log.

« Undo: Reverse the actions of txns that did
not commit before the crash.

Faloutsos/Pavlo CMU SCs 15-415/615 72

g CMU SCS

Summary

« Additional concepts:

— LSNs identify log records; linked into
backwards chains per transaction (via
prevLSN).

— pageL.SN allows comparison of data page and
log records.

— And several other subtle concepts: undoNext,
recLSN, etc)

Faloutsos/Pavlo CMU SCS 15-415/615 73

g CMU SCS

Conclusion

 Recovery is really hard.

 Be thankful that you don’t have to write it
yourself.

Faloutsos/Pavlo CMU SCS 15-415/615 74

