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Last Class 

• Lock Granularities 

• Locking in B+Trees 

• The Phantom Problem 

• Transaction Isolation Levels 
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Concurrency Control Approaches 

• Two-Phase Locking (2PL) 

– Determine serializability order of conflicting 

operations at runtime while txns execute. 

• Timestamp Ordering (T/O) 

– Determine serializability order of txns before 

they execute. 
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Today's Class 

• Basic Timestamp Ordering 

• Optimistic Concurrency Control 

• Multi-Version Concurrency Control 

• Multi-Version+2PL 

• Partition-based T/O 

• Performance Comparisons 
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Timestamp Allocation 

• Each txn Ti is assigned a unique fixed 

timestamp that is monotonically increasing. 

– Let TS(Ti) be the timestamp allocated to txn Ti 

– Different schemes assign timestamps at 

different times during the txn. 

• Multiple implementation strategies: 

– System Clock. 

– Logical Counter. 

– Hybrid. 
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T/O Concurrency Control 

• Use these timestamps to determine the 

serializability order. 

• If TS(Ti) < TS(Tj), then the DBMS must 

ensure that the execution schedule is 

equivalent to a serial schedule where Ti 

appears before Tj. 
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Basic T/O 

• Txns read and write objects without locks. 

• Every object X is tagged with timestamp of 

the last txn that successfully did read/write: 

– W-TS(X) – Write timestamp on X 

– R-TS(X) – Read timestamp on X 

• Check timestamps for every operation: 

– If txn tries to access an object “from the 

future”, it aborts and restarts. 
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Basic T/O – Reads 

• If TS(Ti) < W-TS(X), this violates 

timestamp order of Ti w.r.t. writer of X. 

– Abort Ti and restart it (with same TS? why?) 

• Else: 

– Allow Ti to read X. 

– Update R-TS(X) to max(R-TS(X), TS(Ti)) 

– Have to make a local copy of X to ensure 

repeatable reads for Ti. 
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Basic T/O – Writes 

• If TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X) 

– Abort and restart Ti. 

• Else: 

– Allow Ti to write X and update W-TS(X) 

– Also have to make a local copy of X to ensure 

repeatable reads for Ti. 
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Basic T/O – Example #1 
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BEGIN 
R(B) 
 
 
 
R(A) 
 
 
COMMIT 

T1 T2 
 
 
BEGIN 
R(B) 
W(B) 
 
R(A) 
W(A) 
COMMIT 

Schedule Database 

Object R-TS W-TS 

A 0 0 

B 0 0 

- - - 

TS(T1)=1 TS(T2)=2 

1 

1 2 2 

2 2 

No violations so both 
txns are safe to commit. 
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Basic T/O – Example #2 
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BEGIN 
R(A) 
 
 
 
W(A) 
COMMIT 

T1 T2 
 
 
BEGIN 
W(A) 
COMMIT 

Schedule Database 

Object R-TS W-TS 

A 0 0 

- - - 

- - - 

1 2 

Violation: 
TS(T1) < W-TS(A) 

T1 cannot overwrite 
update by T2, so it 

has to abort+restart. 
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Basic T/O – Thomas Write Rule 

• If TS(Ti) < R-TS(X): 

– Abort and restart Ti. 

• If TS(Ti) < W-TS(X): 

– Thomas Write Rule: Ignore the write and 

allow the txn to continue. 

– This violates timestamp order of Ti 

• Else: 

– Allow Ti to write X and update W-TS(X) 
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Basic T/O – Thomas Write Rule 
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BEGIN 
R(A) 
 
 
 
W(A) 
COMMIT 

T1 T2 
 
 
BEGIN 
W(A) 
COMMIT 

Schedule Database 

Object R-TS W-TS 

A - - 

- - - 

- - - 

1 2 

Ignore the write and 
allow T1 to commit. 

We do not update 
W-TS(A) 
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Basic T/O 

• Ensures conflict serializability if you don’t 

use the Thomas Write Rule. 

• No deadlocks because no txn ever waits. 

• Possibility of starvation for long txns if 

short txns keep causing conflicts. 

• Permits schedules that are not recoverable. 
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Recoverable Schedules 

• Transactions commit only after all 

transactions whose changes they read, 

commit. 
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Recoverability 
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BEGIN 
W(A) 
  ⋮ 
 
 

T1 T2 
 
 
BEGIN 
R(A) 
W(B) 
COMMIT 
   
 
 
 
 
 
 

Schedule 

T2 is allowed to read the 
writes of T1. 

This is not recoverable 
because we can’t restart T2. 

T
I
M

E
 

T1 aborts after T2 has 
committed. 

ABORT 
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Basic T/O – Performance Issues 

• High overhead from copying data to txn’s 

workspace and from updating timestamps. 

• Long running txns can get starved. 

• Suffers from timestamp bottleneck. 
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Today's Class 

• Basic Timestamp Ordering 

• Optimistic Concurrency Control 

• Multi-Version Concurrency Control 

• Multi-Version+2PL 

• Partition-based T/O 

• Performance Comparisons 
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Optimistic Concurrency Control 

• Assumption: Conflicts are rare 

• Forcing txns to wait to acquire locks adds a 

lot of overhead. 

• Optimize for the no-conflict case. 
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OCC Phases 

• Read: Track the read/write sets of txns and 

store their writes in a private workspace. 

• Validation: When a txn commits, check 

whether it conflicts with other txns. 

• Write: If validation succeeds, apply private 

changes to database. Otherwise abort and 

restart the txn. 
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OCC – Example 
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BEGIN 
READ 
R(A) 
 
 
 
 
W(A) 
VALIDATE 
WRITE 
COMMIT 

T1 T2 
BEGIN 
 
READ 
R(A) 
VALIDATE 
WRITE 
COMMIT 

Schedule Database 

Object Value W-TS 

A 123 0 

- - - 

T1 Workspace 

Object Value W-TS 

- - - 

- - - 

T2 Workspace 

Object Value W-TS 

- - - 

- - - 

456 2 

123 0 A 123 0 A 456 ∞ 

TS(T2)=1 

TS(T1)=2 
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OCC – Validation Phase 

• Need to guarantee only serializable 

schedules are permitted. 

• At validation, Ti checks other txns for RW 

and WW conflicts and makes sure that all 

conflicts go one way (from older txns to 

younger txns). 
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OCC – Serial Validation 

• Maintain global view of all active txns. 

• Record read set and write set while txns are 

running and write into private workspace. 

• Execute Validation and Write phase inside 

a protected critical section. 
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OCC – Validation Phase 

• Each txn’s timestamp is assigned at the 

beginning of the validation phase. 

• Check the timestamp ordering of the 

committing txn with all other running txns. 

• If TS(Ti)  < TS(Tj), then one of the 

following three conditions must hold… 
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OCC – Validation #1 

• Ti completes all three phases before Tj 

begins. 
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OCC – Validation #1 

Faloutsos/Pavlo CMU SCS 15-415/615 26 

BEGIN 
READ 
VALIDATE 
WRITE 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
READ 
VALIDATE 
WRITE 
COMMIT 

T
I
M
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OCC – Validation #2 

• Ti completes before Tj starts its Write 

phase, and Ti does not write to any object 

read by Tj. 

– WriteSet(Ti) ∩ ReadSet(Tj) = Ø  
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OCC – Validation #2 
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BEGIN 
READ 
R(A) 
W(A) 
 
 
VALIDATE 
 

T1 T2 
BEGIN 
 
 
READ 
R(A) 
 
 
VALIDATE 
WRITE 
COMMIT 

Schedule Database 

Object Value W-TS 

A 123 0 

- - - 

T1 Workspace 

Object Value W-TS 

- - - 

- - - 

T2 Workspace 

Object Value W-TS 

- - - 

- - - 

123 0 A 123 0 A 456 ∞ 

T1 has to abort even 
though T2 will never 
write to the database. 
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OCC – Validation #2 
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BEGIN 
READ 
R(A) 
W(A) 
 
 
VALIDATE 
WRITE 
COMMIT 
 

T1 T2 
BEGIN 
 
 
READ 
R(A) 
VALIDATE 
 
 
WRITE 
COMMIT 

Schedule Database 

Object Value W-TS 

A 123 0 

- - - 

T1 Workspace 

Object Value W-TS 

- - - 

- - - 

T2 Workspace 

Object Value W-TS 

- - - 

- - - 

123 0 A 123 0 A 456 ∞ 

Safe to commit T1 
because we know that 

T2 will not write. 
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OCC – Validation #3 

• Ti completes its Read phase before Tj 

completes its Read phase 

• And Ti does not write to any object that is 

either read or written by Tj: 

– WriteSet(Ti) ∩ ReadSet(Tj) = Ø  

– WriteSet(Ti) ∩ WriteSet(Tj) = Ø  
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OCC – Validation #3 
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BEGIN 
READ 
R(A) 
W(A) 
 
VALIDATE 
WRITE 
COMMIT 
 

T1 T2 
BEGIN 
 
 
READ 
R(B) 
 
 
R(A) 
VALIDATE 
WRITE 
COMMIT 

Schedule Database 

Object Value W-TS 

A 123 0 

B XYZ 0 

T1 Workspace 

Object Value W-TS 

- - - 

- - - 

T2 Workspace 

Object Value W-TS 

- - - 

- - - 

123 0 A XYZ 0 B 456 ∞ 

456 1 A 

456 1 

Safe to commit T1 
because T2 sees the DB 
after T1 has executed. 

TS(T1)=1 
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OCC – Observations 

• Q: When does OCC work well? 

• A: When # of conflicts is low: 

– All txns are read-only (ideal). 

– Txns access disjoint subsets of data. 

• If the database is large and the workload is 

not skewed, then there is a low probability 

of conflict, so again locking is wasteful. 
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OCC – Performance Issues 

• High overhead for copying data locally. 

• Validation/Write phase bottlenecks. 

• Aborts are more wasteful because they only 

occur after a txn has already executed. 

• Suffers from timestamp allocation 

bottleneck. 
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Today's Class 

• Basic Timestamp Ordering 

• Optimistic Concurrency Control 

• Multi-Version Concurrency Control 

• Multi-Version+2PL 

• Partition-based T/O 

• Performance Comparisons 
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Multi-Version Concurrency Control 

• Writes create new versions of objects 

instead of in-place updates: 

– Each successful write results in the creation of a 

new version of the data item written. 

• Use write timestamps to label versions. 

– Let Xk denote the version of X where for a 

given txn Ti: W-TS(Xk) ≤ TS(Ti)  
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MVCC – Reads 

• Any read operation sees the latest version of 

an object from right before that txn started. 

• Every read request can be satisfied without 

blocking the txn. 

• If TS(Ti) > R-TS(Xk): 

– Set R-TS(Xk) = TS(Ti) 

Faloutsos/Pavlo CMU SCS 15-415/615 37 



CMU SCS 

MVCC – Writes 

• If TS(Ti) < R-TS(Xk): 

– Abort and restart Ti. 

• If TS(Ti) = W-TS(Xk): 

– Overwrite the contents of Xk. 

• Else: 

– Create a new version of Xk+1 and set its write 

timestamp to TS(Ti). 
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MVCC – Example #1 
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BEGIN 
R(A) 
W(A) 
 
 
R(A) 
COMMIT 

T1 T2 
 
 
BEGIN 
R(A) 
W(A) 
 
COMMIT 

Schedule Database 

Object Value R-TS W-TS 

A0 123 0 0 

- - - - 

- - - - 

1 

T1 reads version A1 that it 
wrote earlier. 

1 1 456 A1 2 

2 2 789 A2 

TS(T1)=1 TS(T2)=2 
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MVCC – Example #2 
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BEGIN 
R(A) 
 
 
 
W(A) 

T1 T2 
 
 
BEGIN 
R(A) 
COMMIT 

Schedule Database 

Object Value R-TS W-TS 

A0 123 0 0 

- - - 

1 2 

T1 is aborted because T2 
“moved” time forward . 

Violation: 
TS(T1) < R-TS(A0) 
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MVCC 

• Can still incur cascading aborts because a 

txn sees uncommitted versions from txns 

that started before it did. 

• Old versions of tuples accumulate. 

• The DBMS needs a way to remove old 

versions to reclaim storage space. 
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MVCC Implementations 

• Store versions directly in main tables: 

– Postgres, Firebird/Interbase 

• Store versions in separate temp tables: 

– MSFT SQL Server 

• Only store a single master version: 

– Oracle, MySQL 
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Garbage Collection – Postgres 

• Never overwrites older versions. 

• New tuples are appended to table. 

• Deleted tuples are marked with a tombstone 

and then left in place. 

• Separate background threads (VACUUM) has 

to scan tables to find tuples to remove.  
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Garbage Collection – MySQL 

• Only one “master” version for each tuple. 

• Information about older versions are put in 

temp rollback segment and then pruned 

over time with a single thread (PURGE). 

• Deleted tuples are left in place and the 

space is reused. 
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MVCC – Performance Issues 

• High abort overhead cost. 

• Suffers from timestamp allocation 

bottleneck. 

• Garbage collection overhead. 

• Requires stalls to ensure recoverability. 
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Today's Class 

• Basic Timestamp Ordering 

• Optimistic Concurrency Control 

• Multi-Version Concurrency Control 

• Multi-Version+2PL 

• Partition-based T/O 

• Performance Comparisons 
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MVCC+2PL 

• Combine the advantages of MVCC and 2PL 

together in a single scheme. 

• Use different concurrency control scheme 

for read-only txns than for update txns. 
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MVCC+2PL – Reads 

• Use MVCC for read-only txns so that they 

never block on a writer 

• Read-only txns are assigned a timestamp 

when they enter the system. 

• Any read operations see the latest version of 

an object from right before that txn started. 
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MVCC+2PL – Writes 

• Use strict 2PL to schedule the operations of 

update txns: 

– Read-only txns are essentially ignored. 

• Txns never overwrite objects: 

– Create a new copy for each write and set its 

timestamp to ∞. 

– Set the correct timestamp when txn commits. 

– Only one txn can commit at a time.   
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MVCC+2PL – Performance Issues 

• All the lock contention of 2PL. 

• Suffers from timestamp allocation 

bottleneck. 
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Today's Class 

• Basic Timestamp Ordering 

• Optimistic Concurrency Control 

• Multi-Version Concurrency Control 

• Multi-Version+2PL 

• Partition-based T/O 

• Performance Comparisons 
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Observation 

• When a txn commits, all previous T/O 

schemes check to see whether there is a 

conflict with concurrent txns. 

• This requires locks/latches/mutexes. 

• If you have a lot of concurrent txns, then 

this is slow even if the conflict rate is low. 
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Partition-based T/O 

• Split the database up in disjoint subsets 

called partitions (aka shards). 

• Only check for conflicts between txns that 

are running in the same partition. 
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Database Partitioning 
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Schema Schema Tree 
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Database Partitioning 
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P1 

P1 

P1 

P1 

P2 

P2 

P2 

P2 

P2 

P2 

P3 

P3 

P3 

P3 

P3 

P3 

P4 

P4 

P4 

P4 

P4 

P4 

P5 

P5 

P5 

P5 

P5 

P5 

Schema Tree Partitions 
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Partition-based T/O 

• Txns are assigned timestamps based on 

when they arrive at the DBMS. 

• Partitions are protected by a single lock: 

– Each txn is queued at the partitions it needs. 

– The txn acquires a partition’s lock if it has the 

lowest timestamp in that partition’s queue. 

– The txn starts when it has all of the locks for all 

the partitions that it will read/write. 

Faloutsos/Pavlo CMU SCS 15-415/615 56 

CMU SCS 

Partition-based T/O – Reads 

• Do not need to maintain multiple versions. 

• Txns can read anything that they want at the 

partitions that they have locked. 

• If a txn tries to access a partition that it does 

not have the lock, it is aborted + restarted. 
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Partition-based T/O – Writes 

• All updates occur in place. 

– Maintain a separate in-memory buffer to undo 

changes if the txn aborts. 

• If a txn tries to access a partition that it does 

not have the lock, it is aborted + restarted. 
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Partition-based T/O – 
Performance Issues 

• Partition-based T/O protocol is very fast if: 

– The DBMS knows what partitions the txn needs 

before it starts. 

– Most (if not all) txns only need to access a 

single partition. 

• Multi-partition txns causes partitions to be 

idle while txn executes. 
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Today's Class 

• Basic Timestamp Ordering 

• Optimistic Concurrency Control 

• Multi-Version Concurrency Control 

• Multi-Version+2PL 

• Partition-based T/O 

• Performance Comparisons 
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Performance Comparison 

• Different schemes make different trade-offs. 

• Measure how well each scheme scales on 

future many-core CPUs. 

– Ignore indexing and logging issues (for now). 
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Joint work with Xiangyao Yu, George Bezerra, 
Mike Stonebraker, and Srini Devadas. 

http://cmudb.io/1000cores 
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Graphite CPU Simulator 

• Simulates a single CPU with 1024 cores. 

– Runs on a 22-node cluster. 

– Average slowdown: 10,000x 

• Custom, lightweight DBMS that supports 

pluggable concurrency control coordinator. 
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Tested CC Schemes 
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DL_DETECT 2PL with Deadlock Detection 

NO_WAIT 2PL with Non-waiting Deadlock Prevention 

WAIT_DIE 2PL with Wait-Die Deadlock Prevention 

TIMESTAMP Basic T/O 

OCC Optimistic Concurrency Control 

MVCC Multi-Version Concurrency Control 

H-STORE Partition-based T/O 
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Benchmark #1 
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YCSB Workload – Read-Only (~60GB) 

CMU SCS 

Benchmark #2 
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TPC-C Workload – 1024 Warehouses (~26GB) 
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Which CC Scheme is Best? 

• Like many things in life, it depends… 

– How skewed is the workload? 

– Are the txns short or long? 

– Is the workload mostly read-only? 
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CC Schemes 
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DL_DETECT 
Scales under low-contention. Suffers from lock thrashing 

and deadlocks. 

NO_WAIT 
Has no centralized point of contention. Highly scalable. 

Very high abort rates. 

WAIT_DIE 
Suffers from lock thrashing and timestamp allocation 

bottleneck. No deadlocks. 

TIMESTAMP 
High overhead from copying data and timestamp 

bottleneck. Non-blocking writes. 

OCC 
Performs well for read-only workloads. Non-blocking 

reads and writes. Timestamp bottleneck. 

MVCC 
High overhead for copying data locally. High abort cost. 

Suffers from timestamp bottleneck. 

H-STORE 
The best algorithm for partitioned workloads. Suffers from 

timestamp bottleneck. 
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Real Systesms 
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Scheme Released 

Ingres Strict 2PL 1975 

Informix Strict 2PL 1980 

IBM DB2 Strict 2PL 1983 

Oracle MVCC 1984* 

Postgres MVCC 1985 

MS SQL Server Strict 2PL or MVCC 1992* 

MySQL (InnoDB) MVCC+2PL 2001 

Aerospike OCC 2009 

SAP HANA MVCC 2010 

VoltDB Partition T/O 2010 

MemSQL MVCC 2011 

MS Hekaton MVCC+OCC 2013 

CMU SCS 

Summary 

• Concurrency control is hard. 
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