
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#23: Concurrency Control – Part 3

 (R&G ch. 17)

CMU SCS

Last Class

• Lock Granularities

• Locking in B+Trees

• The Phantom Problem

• Transaction Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Concurrency Control Approaches

• Two-Phase Locking (2PL)

– Determine serializability order of conflicting

operations at runtime while txns execute.

• Timestamp Ordering (T/O)

– Determine serializability order of txns before

they execute.

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

Today's Class

• Basic Timestamp Ordering

• Optimistic Concurrency Control

• Multi-Version Concurrency Control

• Multi-Version+2PL

• Partition-based T/O

• Performance Comparisons

Faloutsos/Pavlo CMU SCS 15-415/615 4

CMU SCS

Timestamp Allocation

• Each txn Ti is assigned a unique fixed

timestamp that is monotonically increasing.

– Let TS(Ti) be the timestamp allocated to txn Ti

– Different schemes assign timestamps at

different times during the txn.

• Multiple implementation strategies:

– System Clock.

– Logical Counter.

– Hybrid.
Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

T/O Concurrency Control

• Use these timestamps to determine the

serializability order.

• If TS(Ti) < TS(Tj), then the DBMS must

ensure that the execution schedule is

equivalent to a serial schedule where Ti

appears before Tj.

Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

Basic T/O

• Txns read and write objects without locks.

• Every object X is tagged with timestamp of

the last txn that successfully did read/write:

– W-TS(X) – Write timestamp on X

– R-TS(X) – Read timestamp on X

• Check timestamps for every operation:

– If txn tries to access an object “from the

future”, it aborts and restarts.

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Basic T/O – Reads

• If TS(Ti) < W-TS(X), this violates

timestamp order of Ti w.r.t. writer of X.

– Abort Ti and restart it (with same TS? why?)

• Else:

– Allow Ti to read X.

– Update R-TS(X) to max(R-TS(X), TS(Ti))

– Have to make a local copy of X to ensure

repeatable reads for Ti.

Faloutsos/Pavlo CMU SCS 15-415/615 8

CMU SCS

Basic T/O – Writes

• If TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X)

– Abort and restart Ti.

• Else:

– Allow Ti to write X and update W-TS(X)

– Also have to make a local copy of X to ensure

repeatable reads for Ti.

Faloutsos/Pavlo CMU SCS 15-415/615 9

CMU SCS

Basic T/O – Example #1

Faloutsos/Pavlo CMU SCS 15-415/615 10

T
I
M

E

BEGIN
R(B)

R(A)

COMMIT

T1 T2

BEGIN
R(B)
W(B)

R(A)
W(A)
COMMIT

Schedule Database

Object R-TS W-TS

A 0 0

B 0 0

- - -

TS(T1)=1 TS(T2)=2

1

1 2 2

2 2

No violations so both
txns are safe to commit.

CMU SCS

Basic T/O – Example #2

Faloutsos/Pavlo CMU SCS 15-415/615 11

T
I
M

E

BEGIN
R(A)

W(A)
COMMIT

T1 T2

BEGIN
W(A)
COMMIT

Schedule Database

Object R-TS W-TS

A 0 0

- - -

- - -

1 2

Violation:
TS(T1) < W-TS(A)

T1 cannot overwrite
update by T2, so it

has to abort+restart.

CMU SCS

Basic T/O – Thomas Write Rule

• If TS(Ti) < R-TS(X):

– Abort and restart Ti.

• If TS(Ti) < W-TS(X):

– Thomas Write Rule: Ignore the write and

allow the txn to continue.

– This violates timestamp order of Ti

• Else:

– Allow Ti to write X and update W-TS(X)

Faloutsos/Pavlo CMU SCS 15-415/615 12

CMU SCS

Basic T/O – Thomas Write Rule

Faloutsos/Pavlo CMU SCS 15-415/615 13

T
I
M

E

BEGIN
R(A)

W(A)
COMMIT

T1 T2

BEGIN
W(A)
COMMIT

Schedule Database

Object R-TS W-TS

A - -

- - -

- - -

1 2

Ignore the write and
allow T1 to commit.

We do not update
W-TS(A)

CMU SCS

Basic T/O

• Ensures conflict serializability if you don’t

use the Thomas Write Rule.

• No deadlocks because no txn ever waits.

• Possibility of starvation for long txns if

short txns keep causing conflicts.

• Permits schedules that are not recoverable.

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Recoverable Schedules

• Transactions commit only after all

transactions whose changes they read,

commit.

Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU SCS

Recoverability

Faloutsos/Pavlo CMU SCS 15-415/615 16

BEGIN
W(A)
 ⋮

T1 T2

BEGIN
R(A)
W(B)
COMMIT

Schedule

T2 is allowed to read the
writes of T1.

This is not recoverable
because we can’t restart T2.

T
I
M

E

T1 aborts after T2 has
committed.

ABORT

CMU SCS

Basic T/O – Performance Issues

• High overhead from copying data to txn’s

workspace and from updating timestamps.

• Long running txns can get starved.

• Suffers from timestamp bottleneck.

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Today's Class

• Basic Timestamp Ordering

• Optimistic Concurrency Control

• Multi-Version Concurrency Control

• Multi-Version+2PL

• Partition-based T/O

• Performance Comparisons

Faloutsos/Pavlo CMU SCS 15-415/615 18

CMU SCS

Optimistic Concurrency Control

• Assumption: Conflicts are rare

• Forcing txns to wait to acquire locks adds a

lot of overhead.

• Optimize for the no-conflict case.

Faloutsos/Pavlo CMU SCS 15-415/615 19

CMU SCS

OCC Phases

• Read: Track the read/write sets of txns and

store their writes in a private workspace.

• Validation: When a txn commits, check

whether it conflicts with other txns.

• Write: If validation succeeds, apply private

changes to database. Otherwise abort and

restart the txn.

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU SCS

OCC – Example

Faloutsos/Pavlo CMU SCS 15-415/615 21

T
I
M

E

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE
COMMIT

T1 T2
BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

Schedule Database

Object Value W-TS

A 123 0

- - -

T1 Workspace

Object Value W-TS

- - -

- - -

T2 Workspace

Object Value W-TS

- - -

- - -

456 2

123 0 A 123 0 A 456 ∞

TS(T2)=1

TS(T1)=2

CMU SCS

OCC – Validation Phase

• Need to guarantee only serializable

schedules are permitted.

• At validation, Ti checks other txns for RW

and WW conflicts and makes sure that all

conflicts go one way (from older txns to

younger txns).

Faloutsos/Pavlo CMU SCS 15-415/615 22

CMU SCS

OCC – Serial Validation

• Maintain global view of all active txns.

• Record read set and write set while txns are

running and write into private workspace.

• Execute Validation and Write phase inside

a protected critical section.

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

OCC – Validation Phase

• Each txn’s timestamp is assigned at the

beginning of the validation phase.

• Check the timestamp ordering of the

committing txn with all other running txns.

• If TS(Ti) < TS(Tj), then one of the

following three conditions must hold…

Faloutsos/Pavlo CMU SCS 15-415/615 24

CMU SCS

OCC – Validation #1

• Ti completes all three phases before Tj

begins.

Faloutsos/Pavlo CMU SCS 15-415/615 25

CMU SCS

OCC – Validation #1

Faloutsos/Pavlo CMU SCS 15-415/615 26

BEGIN
READ
VALIDATE
WRITE
COMMIT

T1 T2

BEGIN
READ
VALIDATE
WRITE
COMMIT

T
I
M

E

CMU SCS

OCC – Validation #2

• Ti completes before Tj starts its Write

phase, and Ti does not write to any object

read by Tj.

– WriteSet(Ti) ∩ ReadSet(Tj) = Ø

Faloutsos/Pavlo CMU SCS 15-415/615 27

CMU SCS

OCC – Validation #2

Faloutsos/Pavlo CMU SCS 15-415/615 28

T
I
M

E

BEGIN
READ
R(A)
W(A)

VALIDATE

T1 T2
BEGIN

READ
R(A)

VALIDATE
WRITE
COMMIT

Schedule Database

Object Value W-TS

A 123 0

- - -

T1 Workspace

Object Value W-TS

- - -

- - -

T2 Workspace

Object Value W-TS

- - -

- - -

123 0 A 123 0 A 456 ∞

T1 has to abort even
though T2 will never
write to the database.

CMU SCS

OCC – Validation #2

Faloutsos/Pavlo CMU SCS 15-415/615 29

T
I
M

E

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

T1 T2
BEGIN

READ
R(A)
VALIDATE

WRITE
COMMIT

Schedule Database

Object Value W-TS

A 123 0

- - -

T1 Workspace

Object Value W-TS

- - -

- - -

T2 Workspace

Object Value W-TS

- - -

- - -

123 0 A 123 0 A 456 ∞

Safe to commit T1
because we know that

T2 will not write.

CMU SCS

OCC – Validation #3

• Ti completes its Read phase before Tj

completes its Read phase

• And Ti does not write to any object that is

either read or written by Tj:

– WriteSet(Ti) ∩ ReadSet(Tj) = Ø

– WriteSet(Ti) ∩ WriteSet(Tj) = Ø

Faloutsos/Pavlo CMU SCS 15-415/615 30

CMU SCS

OCC – Validation #3

Faloutsos/Pavlo CMU SCS 15-415/615 31

T
I
M

E

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

T1 T2
BEGIN

READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

Schedule Database

Object Value W-TS

A 123 0

B XYZ 0

T1 Workspace

Object Value W-TS

- - -

- - -

T2 Workspace

Object Value W-TS

- - -

- - -

123 0 A XYZ 0 B 456 ∞

456 1 A

456 1

Safe to commit T1
because T2 sees the DB
after T1 has executed.

TS(T1)=1

CMU SCS

OCC – Observations

• Q: When does OCC work well?

• A: When # of conflicts is low:

– All txns are read-only (ideal).

– Txns access disjoint subsets of data.

• If the database is large and the workload is

not skewed, then there is a low probability

of conflict, so again locking is wasteful.

Faloutsos/Pavlo CMU SCS 15-415/615 33

CMU SCS

OCC – Performance Issues

• High overhead for copying data locally.

• Validation/Write phase bottlenecks.

• Aborts are more wasteful because they only

occur after a txn has already executed.

• Suffers from timestamp allocation

bottleneck.

Faloutsos/Pavlo CMU SCS 15-415/615 34

CMU SCS

Today's Class

• Basic Timestamp Ordering

• Optimistic Concurrency Control

• Multi-Version Concurrency Control

• Multi-Version+2PL

• Partition-based T/O

• Performance Comparisons

Faloutsos/Pavlo CMU SCS 15-415/615 35

CMU SCS

Multi-Version Concurrency Control

• Writes create new versions of objects

instead of in-place updates:

– Each successful write results in the creation of a

new version of the data item written.

• Use write timestamps to label versions.

– Let Xk denote the version of X where for a

given txn Ti: W-TS(Xk) ≤ TS(Ti)

Faloutsos/Pavlo CMU SCS 15-415/615 36

CMU SCS

MVCC – Reads

• Any read operation sees the latest version of

an object from right before that txn started.

• Every read request can be satisfied without

blocking the txn.

• If TS(Ti) > R-TS(Xk):

– Set R-TS(Xk) = TS(Ti)

Faloutsos/Pavlo CMU SCS 15-415/615 37

CMU SCS

MVCC – Writes

• If TS(Ti) < R-TS(Xk):

– Abort and restart Ti.

• If TS(Ti) = W-TS(Xk):

– Overwrite the contents of Xk.

• Else:

– Create a new version of Xk+1 and set its write

timestamp to TS(Ti).

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

MVCC – Example #1

Faloutsos/Pavlo CMU SCS 15-415/615 39

T
I
M

E

BEGIN
R(A)
W(A)

R(A)
COMMIT

T1 T2

BEGIN
R(A)
W(A)

COMMIT

Schedule Database

Object Value R-TS W-TS

A0 123 0 0

- - - -

- - - -

1

T1 reads version A1 that it
wrote earlier.

1 1 456 A1 2

2 2 789 A2

TS(T1)=1 TS(T2)=2

CMU SCS

MVCC – Example #2

Faloutsos/Pavlo CMU SCS 15-415/615 40

T
I
M

E

BEGIN
R(A)

W(A)

T1 T2

BEGIN
R(A)
COMMIT

Schedule Database

Object Value R-TS W-TS

A0 123 0 0

- - -

1 2

T1 is aborted because T2
“moved” time forward .

Violation:
TS(T1) < R-TS(A0)

CMU SCS

MVCC

• Can still incur cascading aborts because a

txn sees uncommitted versions from txns

that started before it did.

• Old versions of tuples accumulate.

• The DBMS needs a way to remove old

versions to reclaim storage space.

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

MVCC Implementations

• Store versions directly in main tables:

– Postgres, Firebird/Interbase

• Store versions in separate temp tables:

– MSFT SQL Server

• Only store a single master version:

– Oracle, MySQL

Faloutsos/Pavlo CMU SCS 15-415/615 42

CMU SCS

Garbage Collection – Postgres

• Never overwrites older versions.

• New tuples are appended to table.

• Deleted tuples are marked with a tombstone

and then left in place.

• Separate background threads (VACUUM) has

to scan tables to find tuples to remove.

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Garbage Collection – MySQL

• Only one “master” version for each tuple.

• Information about older versions are put in

temp rollback segment and then pruned

over time with a single thread (PURGE).

• Deleted tuples are left in place and the

space is reused.

Faloutsos/Pavlo CMU SCS 15-415/615 44

CMU SCS

MVCC – Performance Issues

• High abort overhead cost.

• Suffers from timestamp allocation

bottleneck.

• Garbage collection overhead.

• Requires stalls to ensure recoverability.

Faloutsos/Pavlo CMU SCS 15-415/615 45

CMU SCS

Today's Class

• Basic Timestamp Ordering

• Optimistic Concurrency Control

• Multi-Version Concurrency Control

• Multi-Version+2PL

• Partition-based T/O

• Performance Comparisons

Faloutsos/Pavlo CMU SCS 15-415/615 46

CMU SCS

MVCC+2PL

• Combine the advantages of MVCC and 2PL

together in a single scheme.

• Use different concurrency control scheme

for read-only txns than for update txns.

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

MVCC+2PL – Reads

• Use MVCC for read-only txns so that they

never block on a writer

• Read-only txns are assigned a timestamp

when they enter the system.

• Any read operations see the latest version of

an object from right before that txn started.

Faloutsos/Pavlo CMU SCS 15-415/615 48

CMU SCS

MVCC+2PL – Writes

• Use strict 2PL to schedule the operations of

update txns:

– Read-only txns are essentially ignored.

• Txns never overwrite objects:

– Create a new copy for each write and set its

timestamp to ∞.

– Set the correct timestamp when txn commits.

– Only one txn can commit at a time.

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU SCS

MVCC+2PL – Performance Issues

• All the lock contention of 2PL.

• Suffers from timestamp allocation

bottleneck.

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

Today's Class

• Basic Timestamp Ordering

• Optimistic Concurrency Control

• Multi-Version Concurrency Control

• Multi-Version+2PL

• Partition-based T/O

• Performance Comparisons

Faloutsos/Pavlo CMU SCS 15-415/615 51

CMU SCS

Observation

• When a txn commits, all previous T/O

schemes check to see whether there is a

conflict with concurrent txns.

• This requires locks/latches/mutexes.

• If you have a lot of concurrent txns, then

this is slow even if the conflict rate is low.

Faloutsos/Pavlo CMU SCS 15-415/615 52

CMU SCS

Partition-based T/O

• Split the database up in disjoint subsets

called partitions (aka shards).

• Only check for conflicts between txns that

are running in the same partition.

Faloutsos/Pavlo CMU SCS 15-415/615 53

CMU SCS

Database Partitioning

Faloutsos/Pavlo CMU SCS 15-415/615 54

Schema Schema Tree

CMU SCS

Database Partitioning

Faloutsos/Pavlo CMU SCS 15-415/615 55

P1

P1

P1

P1

P1

P1

P2

P2

P2

P2

P2

P2

P3

P3

P3

P3

P3

P3

P4

P4

P4

P4

P4

P4

P5

P5

P5

P5

P5

P5

Schema Tree Partitions

CMU SCS

Partition-based T/O

• Txns are assigned timestamps based on

when they arrive at the DBMS.

• Partitions are protected by a single lock:

– Each txn is queued at the partitions it needs.

– The txn acquires a partition’s lock if it has the

lowest timestamp in that partition’s queue.

– The txn starts when it has all of the locks for all

the partitions that it will read/write.

Faloutsos/Pavlo CMU SCS 15-415/615 56

CMU SCS

Partition-based T/O – Reads

• Do not need to maintain multiple versions.

• Txns can read anything that they want at the

partitions that they have locked.

• If a txn tries to access a partition that it does

not have the lock, it is aborted + restarted.

Faloutsos/Pavlo CMU SCS 15-415/615 57

CMU SCS

Partition-based T/O – Writes

• All updates occur in place.

– Maintain a separate in-memory buffer to undo

changes if the txn aborts.

• If a txn tries to access a partition that it does

not have the lock, it is aborted + restarted.

Faloutsos/Pavlo CMU SCS 15-415/615 58

CMU SCS

Partition-based T/O –
Performance Issues

• Partition-based T/O protocol is very fast if:

– The DBMS knows what partitions the txn needs

before it starts.

– Most (if not all) txns only need to access a

single partition.

• Multi-partition txns causes partitions to be

idle while txn executes.

Faloutsos/Pavlo CMU SCS 15-415/615 59

CMU SCS

Today's Class

• Basic Timestamp Ordering

• Optimistic Concurrency Control

• Multi-Version Concurrency Control

• Multi-Version+2PL

• Partition-based T/O

• Performance Comparisons

Faloutsos/Pavlo CMU SCS 15-415/615 60

CMU SCS

Performance Comparison

• Different schemes make different trade-offs.

• Measure how well each scheme scales on

future many-core CPUs.

– Ignore indexing and logging issues (for now).

Faloutsos/Pavlo CMU SCS 15-415/615 61

Joint work with Xiangyao Yu, George Bezerra,
Mike Stonebraker, and Srini Devadas.

http://cmudb.io/1000cores

CMU SCS

Graphite CPU Simulator

• Simulates a single CPU with 1024 cores.

– Runs on a 22-node cluster.

– Average slowdown: 10,000x

• Custom, lightweight DBMS that supports

pluggable concurrency control coordinator.

Faloutsos/Pavlo CMU SCS 15-415/615 62

CMU SCS

Tested CC Schemes

Faloutsos/Pavlo CMU SCS 15-415/615 63

DL_DETECT 2PL with Deadlock Detection

NO_WAIT 2PL with Non-waiting Deadlock Prevention

WAIT_DIE 2PL with Wait-Die Deadlock Prevention

TIMESTAMP Basic T/O

OCC Optimistic Concurrency Control

MVCC Multi-Version Concurrency Control

H-STORE Partition-based T/O

2
P

L
 S

ch
em

es

T
/O

 S
ch

em
es

CMU SCS

Benchmark #1

Faloutsos/Pavlo CMU SCS 15-415/615 64

YCSB Workload – Read-Only (~60GB)

CMU SCS

Benchmark #2

Faloutsos/Pavlo CMU SCS 15-415/615 65

TPC-C Workload – 1024 Warehouses (~26GB)

CMU SCS

Which CC Scheme is Best?

• Like many things in life, it depends…

– How skewed is the workload?

– Are the txns short or long?

– Is the workload mostly read-only?

Faloutsos/Pavlo CMU SCS 15-415/615 66

CMU SCS

CC Schemes

Faloutsos/Pavlo CMU SCS 15-415/615 67

DL_DETECT
Scales under low-contention. Suffers from lock thrashing

and deadlocks.

NO_WAIT
Has no centralized point of contention. Highly scalable.

Very high abort rates.

WAIT_DIE
Suffers from lock thrashing and timestamp allocation

bottleneck. No deadlocks.

TIMESTAMP
High overhead from copying data and timestamp

bottleneck. Non-blocking writes.

OCC
Performs well for read-only workloads. Non-blocking

reads and writes. Timestamp bottleneck.

MVCC
High overhead for copying data locally. High abort cost.

Suffers from timestamp bottleneck.

H-STORE
The best algorithm for partitioned workloads. Suffers from

timestamp bottleneck.

2
P

L
 S

ch
em

es

T
/O

 S
ch

e
m

e
s

CMU SCS

Real Systesms

Faloutsos/Pavlo CMU SCS 15-415/615 68

Scheme Released

Ingres Strict 2PL 1975

Informix Strict 2PL 1980

IBM DB2 Strict 2PL 1983

Oracle MVCC 1984*

Postgres MVCC 1985

MS SQL Server Strict 2PL or MVCC 1992*

MySQL (InnoDB) MVCC+2PL 2001

Aerospike OCC 2009

SAP HANA MVCC 2010

VoltDB Partition T/O 2010

MemSQL MVCC 2011

MS Hekaton MVCC+OCC 2013

CMU SCS

Summary

• Concurrency control is hard.

Faloutsos/Pavlo CMU SCS 15-415/615 69

