g CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#23: Concurrency Control — Part 3
(R&G ch. 17)

‘g CMU SCS

Faloutsos/Pavlo

Last Class

Lock Granularities

Locking in B+Trees

The Phantom Problem
Transaction Isolation Levels

CMU SCs 15-415/615

g CMU SCS

Concurrency Control Approaches

» Two-Phase Locking (2PL)

— Determine serializability order of conflicting
operations at runtime while txns execute.

* Timestamp Ordering (T/O)

— Determine serializability order of txns before
they execute.

Faloutsos/Pavlo CMU SCS 15-415/615 3

g CMU SCS

Faloutsos/Pavlo

Today's Class

Basic Timestamp Ordering
Optimistic Concurrency Control
Multi-Version Concurrency Control
Multi-Version+2PL

Partition-based T/O

Performance Comparisons

CMU SCs 15-415/615

g CMU SCS g CMU SCS

Timestamp Allocation T/O Concurrency Control
 Each txn Ti is assigned a unique fixed » Use these timestamps to determine the
timestamp that is monotonically increasing. serializability order.
— Let TS(Ti) be the timestamp allocated to txn Ti o If TS(Ti) < TS(Tj), then the DBMS must
— Different schemes assign timestamps at ensure that the execution schedule is
different times during the txn. equivalent to a serial schedule where Ti
» Multiple implementation strategies: appears before Tj.

— System Clock.
— Logical Counter.
— Hybrid.

Faloutsos/Pavlo CMU SCS 15-415/615 5 Faloutsos/Pavlo CMU SCs 15-415/615

g CMU SCS g CMU SCS

Basic T/O Basic T/O — Reads

» Txns read and write objects without locks. o If TS(Ti) < W-TS(X), this violates

« Every object X is tagged with timestamp of timestamp order of Ti w.r.t. writer of X.
the last txn that successfully did read/write: — Abort Ti and restart it (with same TS? why?)
— W-TS(X) — Write timestamp on X Else:
— R-TS(X) — Read timestamp on X — Allow Ti to read X.

« Check timestamps for every operation: — Update R-TS(X) to max(R-TS(X), TS(Ti))
— If txn tries to access an object “from the — Have to make a local copy of X to ensure

future”, it aborts and restarts. repeatable reads for Ti.

Faloutsos/Pavlo CMU SCS 15-415/615 7 Faloutsos/Pavlo CMU SCS 15-415/615

g CMU SCS . -
Basic T/O — Writes

o If TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X)
— Abort and restart Ti.

* Else:
— Allow Ti to write X and update W-TS(X)

— Also have to make a local copy of X to ensure
repeatable reads for Ti.

Faloutsos/Pavlo CMU SCS 15-415/615

CMU sCs

Basic T/O — Example #1

| TS(T1)=1 |du|| TS(T2)=2 | Database
T

T1 Object | R-TS W-TS

BEGIN = - -

e)
BEGIN B 2 2
R(B) - B \
W(B)

__ 0y)

mﬁ; [No violations so both]

comrr T eomnrT txns are safe to commit.

Faloutsos/Pavlo CMU SCs 15-415/615 10

CMU sCSs

Basic T/O — Example #2

Schedule Database
T1 T2 =

BEGIN Object | R-TS W-TS
JR(A) A ! 2
BEGIN - - i

‘W(A) N - \\
COMMIT Violation:
TS(T1) < W-TS(A)
N

T1 cannot overwrite
update by T2, so it
has to abort+restart.

Faloutsos/Pavlo CMU SCS 15-415/615

11

CMU sCs

Basic T/O — Thomas Write Rule

o If TS(Ti) < R-TS(X):
— Abort and restart Ti.
o If TS(Ti) < W-TS(X):

— Thomas Write Rule: Ignore the write and
allow the txn to continue.

— This violates timestamp order of Ti
* Else:

— Allow Ti to write X and update W-TS(X)

Faloutsos/Pavlo CMU SCS 15-415/615 12

CMU sCS

Basic T/O — Thomas Write Rule

‘g CMU SCS

Basic T/O

Faloutsos/Pavlo

Schedule Database
T1 T2 * Ensures conflict serializability if you don’t
Object | R-TS W-TS -
: BEGIN : . ; use the Thomas Write Rule.
BEGIN - - A » No deadlocks because no txn ever waits.
W(A) ; We do not update . . .
(1) COMMIT . W-TS(A) « Possibility of starvation for long txns if
comm short txns keep causing conflicts.
Ignore the write and « Permits schedules that are not recoverable.
allow T1 to commit.
| |
Faloutsos/Pavlo CMU SCS 15-415/615 13 Faloutsos/Pavlo CMU SCS 15-415/615 14
Recoverable Schedules Recoverability
Schedule
« Transactions commit only after all T1 T2
transactions whose changes they read, BEGIN
commit. 5 peeIN_——" T2is allowed to read the
W(B) _L writes of T1.
COMMIT |,
< ABORT This is not recoverable
because we can’t restart T2.
T1 aborts after T2 has
committed.
Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU SCs 15-415/615 16

g CMU SCS

Basic T/O — Performance Issues

* High overhead from copying data to txn’s
workspace and from updating timestamps.

 Long running txns can get starved.
« Suffers from timestamp bottleneck.

Faloutsos/Pavlo CMU SCS 15-415/615 17

g cMU scs |
Today's Class

« Basic Timestamp Ordering
Optimistic Concurrency Control
Multi-Version Concurrency Control
Multi-Version+2PL

Partition-based T/O

Performance Comparisons

=

Faloutsos/Pavlo CMU SCs 15-415/615 18

CMU sCSs

Optimistic Concurrency Control

« Assumption: Conflicts are rare

« Forcing txns to wait to acquire locks adds a
lot of overhead.

» Optimize for the no-conflict case.

Faloutsos/Pavlo CMU SCS 15-415/615 19

g cMU sCs
OCC Phases

» Read: Track the read/write sets of txns and
store their writes in a private workspace.

« Validation: When a txn commits, check
whether it conflicts with other txns.

« Write: If validation succeeds, apply private
changes to database. Otherwise abort and
restart the txn.

Faloutsos/Pavlo CMU SCS 15-415/615 20

g cMu scs
OCC - Example

Schedule Database

T1 T2 Object | Value W-TS)
BEGIN A 456

RIREAD | TS(T2)=1 f
) vaLToATe
VIWRITE | T1 Workspace T2 Workspace

Object |[Value |W-TS Object |[Value |W-TS

A 456 | oo A 123 |0

COMMIT

Faloutsos/Pavlo CMU SCS 15-415/615 21

vg cMU sCs
OCC — Validation Phase

 Need to guarantee only serializable
schedules are permitted.

« At validation, Ti checks other txns for RW
and WW conflicts and makes sure that all
conflicts go one way (from older txns to
younger txns).

Faloutsos/Pavlo CMU SCs 15-415/615 22

CMU sCSs

OCC — Serial Validation

» Maintain global view of all active txns.

» Record read set and write set while txns are
running and write into private workspace.

» Execute Validation and Write phase inside
a protected critical section.

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU sCs

OCC — Validation Phase

» Each txn’s timestamp is assigned at the
beginning of the validation phase.

 Check the timestamp ordering of the
committing txn with all other running txns.

« If TS(Ti) < TS(Tj), then one of the
following three conditions must hold...

Faloutsos/Pavlo CMU SCS 15-415/615 24

CMU sCS

OCC — Validation #1

» Ti completes all three phases before Tj
begins.

Faloutsos/Pavlo CMU SCS 15-415/615

25

CMU sCs

OCC — Validation #1

T1 T2

BEGIN

READ

VALIDATE

WRITE

COMMIT BEGIN
READ
VALIDATE
WRITE
COMMIT

Faloutsos/Pavlo CMU SCS 15-415/615 26

CMU sCSs

OCC — Validation #2

» Ti completes before Tj starts its Write
phase, and Ti does not write to any object
read by Tj.

— WriteSet(Ti) N ReadSet(Tj) = @

Faloutsos/Pavlo CMU SCS 15-415/615

27

CMU sCs

OCC — Validation #2

Schedule Database
T1 T2 Object | Value W-TS
BEGIN BEGIN A 123 0
READ
R(A)
W(A) READ
R(A)
~ T1 Workspace T2 Workspace
VALIDATE)
|VALIDATE Object | Value Object |Value A
(WRITE A 456 (o A |123C|0)
SNMMIT : - : :

though T2 will never
write to the database.
CMU SCS 15-415/615 28

T1 has to abort even J

Faloutsos/Pavlo

g CMU SCS

OCC — Validation #2

Schedule Database
T1 T2 Object | Value W-TS
BEGIN BEGIN A 123 0
READ
R(A)
W(A) READ
R(A)
g [VALIDATE T1 Workspace T2 Workspace
.VALIDATEE
Object |[Value |W-TS Object |[Value |W-TS
COMMIT A 456 | oo A 123 |0

WRITE
MIT

Safe to commit T1]

because we know that
T2 will not write.
CMU SCS 15-415/615 29

Faloutsos/Pavlo

CMU sCs

OCC — Validation #3

» Ti completes its Read phase before Tj
completes its Read phase

« And Ti does not write to any object that is
either read or written by Tj:
— WriteSet(Ti) N ReadSet(T)) =@
— WriteSet(Ti) N WriteSet(Tj) = @

Faloutsos/Pavlo CMU SCs 15-415/615

30

CMU sCSs

OCC — Validation #3

Schedule Database

T1 T2 Object | Value W-TS
BEGIN BEGIN A 456 1
B XYz 0

T1 Workspace T2 Workspace

Object |[Value |W-TS Object |[Value |W-TS
A 456 | B XYZ |0

Safe to commit T1 J A |456 |1

because T2 sees the DB
after T1 has executed.

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU sCs

OCC — Observations

* Q: When does OCC work well?

« A: When # of conflicts is low:
— All txns are read-only (ideal).
— Txns access disjoint subsets of data.

« If the database is large and the workload is
not skewed, then there is a low probability
of conflict, so again locking is wasteful.

Faloutsos/Pavlo CMU SCS 15-415/615

33

CMU sCS

OCC — Performance Issues

High overhead for copying data locally.
Validation/Write phase bottlenecks.

Aborts are more wasteful because they only
occur after a txn has already executed.

Suffers from timestamp allocation
bottleneck.

Faloutsos/Pavlo CMU SCS 15-415/615 34

g cMU scs |
Today's Class

« Basic Timestamp Ordering
 Optimistic Concurrency Control
m)- Multi-Version Concurrency Control

» Multi-Version+2PL
« Partition-based T/O
 Performance Comparisons

Faloutsos/Pavlo CMU SCs 15-415/615 35

CMU sCSs

Multi-Version Concurrency Control

 Writes create new versions of objects
instead of in-place updates:

— Each successful write results in the creation of a
new version of the data item written.

 Use write timestamps to label versions.

— Let X, denote the version of X where for a
given txn Ti: W-TS(X,) < TS(Ti)

Faloutsos/Pavlo CMU SCS 15-415/615 36

g cMU sCs
MV CC — Reads

« Any read operation sees the latest version of
an object from right before that txn started.

 Every read request can be satisfied without
blocking the txn.

« If TS(Ti) > R-TS(X,):
~ Set R-TS(X,) = TS(Ti)

Faloutsos/Pavlo CMU SCS 15-415/615 37

g CMU sCS .
MVCC — Writes

o If TS(Ti) < R-TS(X)):
— Abort and restart Ti.
o If TS(Ti) = W-TS(X}):
— Overwrite the contents of X,.

» Else:

— Create a new version of X,,, and set its write
timestamp to TS(Ti).

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU sCs

MVCC — Example #1

[TS(T1)=1 Jdul[TS(T2)=2 Database
T

T1 Object | Value | R-TS | W-TS

EESN Ay 123 |1 0
W(A) < Alé) 456 |2 1

A, 789 |2 2

wrote earlier.
[|

T1 reads version A, that it}

Faloutsos/Pavlo CMU SCs 15-415/615 39

CMU sCSs

MVCC — Example #2

Schedule Database

T1 T2 Object | Value | R-TS |W-Ts
BEGIN A 123 |2 0

N

BEGIN - _ _\
- Violation:
TS(T1) < R-TS(A;)

T1 is aborted because T2
“moved” time forward .
x]

Faloutsos/Pavlo CMU SCS 15-415/615 40

;‘g CcMU sCs
MVCC

« Can still incur cascading aborts because a
txn sees uncommitted versions from txns
that started before it did.

+ Old versions of tuples accumulate.

» The DBMS needs a way to remove old
versions to reclaim storage space.

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU sCS

MVCC Implementations

» Store versions directly in main tables:
— Postgres, Firebird/Interbase

« Store versions in separate temp tables:
— MSFT SQL Server

* Only store a single master version:
— Oracle, MySQL

Faloutsos/Pavlo CMU SCS 15-415/615

42

CMU sCs

Garbage Collection — Postgres

Never overwrites older versions.
New tuples are appended to table.

Deleted tuples are marked with a tombstone
and then left in place.

Separate background threads (VACUUM) has
to scan tables to find tuples to remove.

Faloutsos/Pavlo CMU SCs 15-415/615 43

CMU sCSs

Garbage Collection — MySQL

* Only one “master” version for each tuple.

« Information about older versions are put in
temp rollback segment and then pruned
over time with a single thread (PURGE).

* Deleted tuples are left in place and the
space is reused.

Faloutsos/Pavlo CMU SCS 15-415/615

44

CMU sCs

MV CC — Performance Issues

High abort overhead cost.

Suffers from timestamp allocation
bottleneck.

Garbage collection overhead.
Requires stalls to ensure recoverability.

Faloutsos/Pavlo CMU SCS 15-415/615 45

g cMu scs |
Today's Class

» Basic Timestamp Ordering

 Optimistic Concurrency Control

» Multi-Version Concurrency Control
m)- Multi-Version+2PL

« Partition-based T/O

 Performance Comparisons

Faloutsos/Pavlo CMU SCS 15-415/615 46

g cMU sCs
MVCC+2PL

« Combine the advantages of MVVCC and 2PL
together in a single scheme.

» Use different concurrency control scheme
for read-only txns than for update txns.

Faloutsos/Pavlo CMU SCs 15-415/615 47

CMU sCSs

MVCC+2PL — Reads

» Use MVCC for read-only txns so that they
never block on a writer

» Read-only txns are assigned a timestamp
when they enter the system.

 Any read operations see the latest version of
an object from right before that txn started.

Faloutsos/Pavlo CMU SCS 15-415/615 48

CMU sCs

MVCC+2PL — Writes

« Use strict 2PL to schedule the operations of
update txns:
— Read-only txns are essentially ignored.

« TXns never overwrite objects:

— Create a new copy for each write and set its
timestamp to .

— Set the correct timestamp when txn commits.
— Only one txn can commit at a time.

Faloutsos/Pavlo CMU SCS 15-415/615 49

g CMU SCS
MVCC+2PL — Performance Issues

» All the lock contention of 2PL.

« Suffers from timestamp allocation
bottleneck.

Faloutsos/Pavlo CMU SCS 15-415/615 50

g cMU scs |
Today's Class

Basic Timestamp Ordering
Optimistic Concurrency Control
Multi-Version Concurrency Control
Multi-Version+2PL

Partition-based T/O

 Performance Comparisons

=

Faloutsos/Pavlo CMU SCS 15-415/615

51

g CMU SCS

Observation

* When a txn commits, all previous T/O
schemes check to see whether there is a
conflict with concurrent txns.

» This requires locks/latches/mutexes.

« If you have a lot of concurrent txns, then
this is slow even if the conflict rate is low.

Faloutsos/Pavlo CMU SCS 15-415/615 52

CMU sCs

Partition-based T/0O

« Split the database up in disjoint subsets
called partitions (aka shards).

 Only check for conflicts between txns that
are running in the same partition.

Faloutsos/Pavlo CMU SCS 15-415/615

53

CMU sCS

Database Partitioning

Schema Tree

WAREHOUSE

I DISTRICT I

l » CUSTOMER

Schema

WAREHOUSE

I STOCK I

DISTRICT

CUSTOMER

fm————— -~
[oroers | 1] imem :
I ORDERS HORDER_ITEMI | Replicated |
N 4
ORDER_ITEM
Faloutsos/Pavio CMU SCS 15-415/615 54

CMU sCs

Database Partitioning

Schema Tree Partitions
Ps Pa
C
1
)
Faloutsos/Pavlo CMU SCS 15-415/615 55

CMU sCSs

Partition-based T/0O

 Txns are assigned timestamps based on
when they arrive at the DBMS.

« Partitions are protected by a single lock:
— Each txn is queued at the partitions it needs.
— The txn acquires a partition’s lock if it has the
lowest timestamp in that partition’s queue.

— The txn starts when it has all of the locks for all
the partitions that it will read/write.

Faloutsos/Pavlo CMU SCS 15-415/615 56

CMU sCs

Partition-based T/O — Reads

* Do not need to maintain multiple versions.

» Txns can read anything that they want at the
partitions that they have locked.

« If a txn tries to access a partition that it does
not have the lock, it is aborted + restarted.

Faloutsos/Pavlo CMU SCS 15-415/615 57

CMU sCS

Partition-based T/O — Writes

+ All updates occur in place.

— Maintain a separate in-memory buffer to undo
changes if the txn aborts.

« If a txn tries to access a partition that it does
not have the lock, it is aborted + restarted.

Faloutsos/Pavlo CMU SCS 15-415/615 58

¥ Ppartition-based T/O —
Performance Issues

» Partition-based T/O protocol is very fast if:

— The DBMS knows what partitions the txn needs
before it starts.

— Most (if not all) txns only need to access a
single partition.
» Multi-partition txns causes partitions to be
idle while txn executes.

Faloutsos/Pavlo CMU SCs 15-415/615 59

g cMuU scs |
Today's Class

Basic Timestamp Ordering
Optimistic Concurrency Control
Multi-Version Concurrency Control
Multi-Version+2PL

Partition-based T/O

Performance Comparisons

\ 4

Faloutsos/Pavlo CMU SCS 15-415/615 60

CMU sCs

Performance Comparison

 Different schemes make different trade-offs.
« Measure how well each scheme scales on
future many-core CPUs.
— Ignore indexing and logging issues (for now).

Joint work with Xiangyao Yu, George Bezerra,
Mike Stonebraker, and Srini Devadas.

http://cmudb.io/1000cores

Faloutsos/Pavlo CMU SCS 15-415/615 61

g cMu scs . . Vg cMU scs
Graphite CPU Simulator Tested CC Schemes

« Simulates a single CPU with 1024 cores. £ oL pETECT| 2PL with Deadlock Detection
[«5]
— Runs on a 22-node cluster. é NO_WAIT | 2PL with Non-waiting Deadlock Prevention
_ . -
Average slowdown: 10,000x Q. WAIT_DIE|2PL with Wait-Die Deadlock Prevention
« Custom, lightweight DBMS that supports @ TIMESTAWP | Basic T/O
pluggable concurrency control coordinator. g occ | Optimistic Concurrency Control
g Mvcc | Multi-Version Concurrency Control
= H-STORE | Partition-based T/O
Faloutsos/Pavlo CMU SCS 15-415/615 62 Faloutsos/Pavlo CMU SCS 15-415/615 63

g CMU sCS Vg cMU sCs
Benchmark #1 Benchmark #2

YCSB Workload — Read-Only (~60GB) TPC-C Workload — 1024 Warehouses (~26GB)
v
0 DL _DETECT g DL _DETECT
g NO_WAIT - 8 NO_WAIT
c WAIT_DIE 2 WAIT_DIE
2 TIMESTAMP s 6 TIMESTAMP
s MVCC = 4 MVCC
5 occ é occ
2 HSTORE 5 2 HSTORE
3 S g T ——
= ‘ ‘ . . ‘ F 0 200 400 600 800 1000
% 200 400 600 800 1000 Number of Cores

Number of Cores

Faloutsos/Pavlo CMU SCS 15-415/615 64 Faloutsos/Pavlo CMU SCS 15-415/615 65

CMU sCS

Which CC Scheme is Best?

g cMU sCs
CC Schemes

. B Scales under low-contention. Suffers from lock thrashing
* Like many things in life, it depends... g DLDETECT |- ¢ deadlocks.
q"
— How skewed is the workload? % NO WAIT Has no centralized point of contention. Highly scalable.
n - Very high abort rates.
— Are the txns short or Iong? C_Ll WAIT DIE | Suffers from lock thrashing and timestamp allocation
Is the workload mostly read-only? - —{pottleneck. Mo deadlocks,
y y TIMESTAMP High overhead from copying data and timestamp
8 bottleneck. Non-blocking writes.
e occ Performs well for read-only workloads. Non-blocking
e reads and writes. Timestamp bottleneck.
% MVCC High overhead for copying data locally. High abort cost.
@) Suffers from timestamp bottleneck.
<
= H-STORE The best algorithm for partitioned workloads. Suffers from
timestamp bottleneck.
Faloutsos/Pavlo CMU SCS 15-415/615 66 Faloutsos/Pavlo CMU SCS 15-415/615 67
g CMU SCS g CMU SCS
| scheme | Released |
trict 2PL 197 H
Ingres Stric o7 « Concurrency control is hard.
Informix Strict 2PL 1980
IBM DB2 Strict 2PL 1983
Oracle Mvce 1984*
Postgres Mvce 1985
MS SQL Server Strict 2PL or MVCC 1992*
MySQL (InnoDB) MVCC+2PL 2001
Aerospike occ 2009
SAP HANA mvcc 2010
\oltDB Partition T/0 2010
MemSQL Mvcc 2011
MS Hekaton Mvcc+occ 2013
Faloutsos/Pavlo CMU SCS 15-415/615 68 Faloutsos/Pavlo CMU SCS 15-415/615 69

