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Last Class 

• A concurrency control scheme uses locks 

and aborts to ensure correctness. 

• Conflict vs. View Serializability 

• (Strict) 2PL is popular. 

• We need to handle deadlocks in 2PL: 

– Detection: Waits-for graph 

– Prevention: Abort some txns, defensively 
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Last Class Assumption 

• We assumed that the database was fixed 

collection of independent objects. 

– No objects are added or deleted. 

– No relationship between objects. 

– No indexes. 
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Today‟s Class 

• Lock Granularities 

• Locking in B+Trees 

• The Phantom Problem 

• Transaction Isolation Levels 
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Lock Granularities 

• When we say that a txn acquires a “lock”, 

what does that actually mean? 

– On a field? Record? Page? Table? 

• Ideally, each txn should obtain fewest 

number of  locks that is needed… 
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Database Lock Hierarchy 
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Database 

Table 1 Table 2 

Tuple 1 

Attr 1 

Tuple 2 

Attr 2 

Tuple n … 

Attr n … 

T1 
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Example 

• T1: Get the balance of Christos‟ shady off-

shore bank account. 

• T2: Increase all account balances by 1%. 

 

• Q: What locks should they obtain? 
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Example 

• Q: What locks should they obtain? 

• A: Multiple 

– Exclusive + Shared for leafs of lock tree. 

– Special Intention locks for higher levels 
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Intention Locks 

• Intention locks allow a higher level node to 

be locked in S or X mode without having to 

check all descendent nodes. 

• If a node is in an intention mode, then 

explicit locking is being done at a lower 

level in the tree. 
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Intention Locks 

• Intention-Shared (IS): Indicates explicit 

locking at a lower level with shared locks. 

• Intention-Exclusive (IX): Indicates locking 

at lower level with exclusive or shared locks. 
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Intention Locks 

• Shared+Intention-Exclusive (SIX): The 

subtree rooted by that node is locked 

explicitly in shared mode and explicit 

locking is being done at a lower level with 

exclusive-mode locks. 
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Compatibility Matrix 
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Multiple Granularity Protocol 
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Locking Protocol 

• Each txn obtains appropriate lock at highest 

level of the database hierarchy. 

• To get S or IS lock on a node, the txn must 

hold at least IS on parent node. 

– What if txn holds SIX on parent? S on parent? 

• To get X, IX, or SIX on a node, must hold 

at least IX on parent node. 
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Example – Two-level Hierarchy 
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Table R 

Tuple 2 Tuple 1 Tuple n … 

T1 

S 
T1 

IS 
T1 

T2 

X 
T2 IX 

T2 

Read Write 
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Example – Threesome 

• Assume three txns execute at same time: 

– T1: Scan R and update a few tuples. 

– T2: Scan a portion of tuples in R. 

– T3: Scan all tuples in R. 
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Table R 

Tuple 2 Tuple 1 Tuple n … 
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Example – Threesome 
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Table R 

Tuple 1 Tuple n … 

T1 

S 
T2 

SIX 
T1 

T2 

X 
T1 IS 

T2 

Read Write 

T3 

Tuple 2 

Read 

S 
T3 

Read 

Scan R and update a few tuples. Scan all tuples in R. Scan a portion of tuples in R. 
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Example – Threesome 

• T1: Get an SIX lock on R, then get X lock 

on tuples that are updated. 

• T2: Get an IS lock on R, and repeatedly get 

an S lock on tuples of R. 

• T3: Two choices: 

– T3 gets an S lock on R.  

– OR, T3 could behave like T2; can use lock 

escalation to decide which. 
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Lock Escalation 

• Lock escalation dynamically asks for 

coarser-grained locks when too many low 

level locks acquired. 

• Reduces the number of requests that the 

lock manager has to process. 
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Multiple Lock Granularities 

• Useful in practice as each txn only needs a 

few locks. 

• Intention locks help improve concurrency: 

– Intention-Shared (IS): Intent to get S lock(s) 

at finer granularity. 

– Intention-Exclusive (IX): Intent to get X 

lock(s) at finer granularity. 

– Shared+Intention-Exclusive (SIX): Like S 

and IX at the same time. 
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Today‟s Class 

• Lock Granularities 

• Locking in B+Trees 

• The Phantom Problem 

• Transaction Isolation Levels 
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Locking in B+Trees 

• Q: What about locking indexes? 

• A: They are not quite like other database 

elements so we can treat them differently: 

– It‟s okay to have non-serializable concurrent 

access to an index as long as the accuracy of the 

index is maintained. 
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Example 

• T1 wants to insert in H 

• T2 wants to insert in I 

• Q: Why not plain 2PL? 

• A: Because txns have 

to hold on to their 

locks for too long! 
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Lock Crabbing 

• Improves concurrency for B+Trees. 

• Get lock for parent; get lock for child; 

release lock for parent if “safe”. 

• Safe Nodes: Any node that won‟t split or 

merge when updated. 

– Not full (on insertion) 

– More than half-full (on deletion) 
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Lock Crabbing 

• Search: Start at root and go down; 

repeatedly, 

– S lock child 

– then unlock parent 

• Insert/Delete: Start at root and go down, 

obtaining X locks as needed. Once child is 

locked, check if it is safe: 

– If child is safe, release all locks on ancestors. 
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Example #1 – Search 38 
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It‟s safe to release the 
lock on A. 

CMU SCS 

38 41 

Example #2 – Delete 38 
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We know that C will not 
need to merge with F, so 
it‟s safe to release A+B. 

We may need to 
coalesce B, so we can‟t 
release the lock on A. 
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38 41 

Example #3 – Insert 45 
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it‟s safe to release A. 
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Example #4 – Insert 25 
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We need to split H so we 
need to keep the lock on 

its parent node. 
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Problems 

• Q: What was the first step that all of the 

update examples did on the B+Tree? 
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Problems 

• Q: What was the first step that all of the 

update examples did on the B+Tree? 

• A: Locking the root every time becomes a 

bottleneck with higher concurrency. 

 

• Can we do better? 
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Better Tree Locking Algorithm 

• Main Idea: 

– Assume that the leaf is „safe‟, and use S-locks 

& crabbing to reach it, and verify. 

– If leaf is not safe, then do previous algorithm. 

• Rudolf Bayer, Mario Schkolnick: 

Concurrency of Operations on B-Trees. 

Acta Inf. 9: 1-21 (1977) 
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Better Tree Locking Algorithm 

• Search: Same as before. 

• Insert/Delete:  

– Set locks as if for search, get to leaf, and set X 

lock on leaf. 

– If leaf is not safe, release all locks, and restart 

txn using previous Insert/Delete protocol. 

• Gambles that only leaf node will be 

modified; if not, S locks set on the first pass 

to leaf are wasteful. 
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38 41 

Example #2 – Delete 38 

Faloutsos/Pavlo CMU SCS 15-415/615 34 

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 

20 

6 12 23 38 44 

A 

B 

F C 

G H I D E 

35 10 

S 

S 

S 

X 

D will not need to 
coalesce, so we‟re safe! 

CMU SCS 

38 41 

Example #4 – Insert 25 
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We need to split H so we 
have to restart and re-
execute like before. 
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Another Alternative 

• Textbook has a third variation, that uses 

lock-upgrades instead of restarting. 

• This approach may lead to deadlocks. 
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Additional Points 

• Q: Which order to release locks in multiple-

granularity locking? 

• A: From the bottom up 

 

• Q: Which order to release locks in tree-

locking? 

• A: As early as possible to maximize 

concurrency. 
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Today‟s Class 

• Lock Granularities 

• Locking in B+Trees 

• The Phantom Problem 

• Transaction Isolation Levels 
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Dynamic Databases 

• Recall that so far we have only dealing with 

transactions that read and update data. 

• But now if we have insertions, updates, and 

deletions, we have new problems… 
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The Phantom Problem 
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BEGIN 
 
 
 
 
 
 
 
 
COMMIT 

T1 T2 

Schedule 

SELECT MAX(age) 
  FROM sailors 
 WHERE rating=1 

BEGIN 
 
 
 
 
 
 
 
 
COMMIT 

INSERT INTO sailors 
(age=96, rating=1) 

SELECT MAX(age) 
  FROM sailors 
 WHERE rating=1 

72 

96 
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How did this happen? 

• Because T1 locked only existing records 

and not ones under way! 

• Conflict serializability on reads and writes 

of individual items guarantees serializability 

only if the set of objects is fixed. 

• Solution? 
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Predicate Locking 

• Lock records that satisfy a logical predicate: 

– Example: rating=1. 

• In general, predicate locking has a lot of 

locking overhead.  

• Index locking is a special case of predicate 

locking that is potentially more efficient. 
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Index Locking 

• If there is a dense index on the rating field 

then the txn can lock index page containing 

the data with rating=1. 

• If there are no records with rating=1, the 

txn must lock the index page where such a 

data entry would be, if it existed. 
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Locking without an Index 

• If there is no suitable index, then the txn 

must obtain: 

– A lock on every page in the table to prevent a 

record‟s rating from being changed to 1. 

– The lock for the table itself to prevent records 

with rating=1 from being added or deleted. 
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Today‟s Class 

• Lock Granularities 

• Locking in B+Trees 

• The Phantom Problem 

• Weaker Levels of Consistency 
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Weaker Levels of Consistency 

• Serializability is useful because it allows 

programmers to ignore concurrency issues. 

• But enforcing it may allow too little 

concurrency and limit performance. 

• We may want to use a weaker level of 

consistency to improve scalability. 
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Isolation Levels 

• Controls the extent that a txn is exposed to 

the actions of other concurrent txns. 

• Provides for greater concurrency at the cost 

of exposing txns to uncommitted changes: 

– Dirty Reads 

– Unrepeatable Reads 

– Phantom Reads 
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Isolation Levels 

• SERIALIZABLE: No phantoms, all reads 

repeatable, no dirty reads. 

• REPEATABLE READS: Phantoms may 

happen. 

• READ COMMITTED: Phantoms and 

unrepeatable reads may happen. 

• READ UNCOMMITTED: All of them 

may happen. 
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Isolation Levels 
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Dirty Read 
Unrepeatable 

Read Phantom 

READ 
UNCOMMITTED Maybe Maybe Maybe 

READ 
COMMITTED No Maybe Maybe 

REPEATABLE 
READ No No Maybe 

SERIALIZABLE No No No 
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Isolation Levels 

• SERIALIZABLE: Obtain all locks first; 

plus index locks, plus strict 2PL. 

• REPEATABLE READS: Same as above, 

but no index locks. 

• READ COMMITTED: Same as above, 

but S locks are released immediately. 

• READ UNCOMMITTED: Same as above, 

but allows dirty reads (no S locks). 
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SQL-92 Isolation Levels 

 

 

 

• Default: Depends… 

• Not all DBMS support all isolation levels in 

all execution scenarios (e.g., replication). 
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SET TRANSACTION ISOLATION LEVEL 
  <isolation-level>; 
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Isolation Levels 
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Default Maximum 

Actian Ingres 10.0/10S SERIALIZABLE SERIALIZABLE 

Aerospike READ COMMITTED READ COMMITTED 

Greenplum 4.1 READ COMMITTED SERIALIZABLE 

MySQL 5.6 REPEATABLE READS SERIALIZABLE 

MemSQL 1b READ COMMITTED READ COMMITTED 

MS SQL Server 2012 READ COMMITTED SERIALIZABLE 

Oracle 11g READ COMMITTED SNAPSHOT ISOLATION 

Postgres 9.2.2 READ COMMITTED SERIALIZABLE 

SAP HANA READ COMMITTED SERIALIZABLE 

ScaleDB 1.02 READ COMMITTED READ COMMITTED 

VoltDB SERIALIZABLE SERIALIZABLE 

Source: Peter Bailis, When is “ACID” ACID? Rarely. January 2013 
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Access Modes 

• You can also provide hints to the DBMS 

about whether a txn will modify the 

database. 

• Only two possible modes: 

– READ WRITE 

– READ ONLY 
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SQL-92 Access Modes 

 

 

 

• Default: READ WRITE 

• Not all DBMSs will optimize execution if 

you set a txn to in READ ONLY mode. 
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SET TRANSACTION <access-mode>; 

START TRANSACTION <access-mode>; 

SQL-92 

Postgres + MySQL 5.6 
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Transaction Demo 
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Summary 

• Multiple granularity locking: leads to few 

locks, at appropriate levels 

• Tree-structured indexes: 

– Lock crabbing and safe nodes 

• Important distinction: 

– Multiple granularity locking releases locks 

bottom-up. 

– Tree-locking releases top-down to maximize 

concurrency. 
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Summary 

• The Phantom Problem occurs if 

insertions/deletions 

• Use Predicate locking to prevent this: 

– Index Locking 

– Table Locking 
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