
CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#22: Concurrency Control – Part 2

 (R&G ch. 17)

CMU SCS

Last Class

• A concurrency control scheme uses locks

and aborts to ensure correctness.

• Conflict vs. View Serializability

• (Strict) 2PL is popular.

• We need to handle deadlocks in 2PL:

– Detection: Waits-for graph

– Prevention: Abort some txns, defensively

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Last Class Assumption

• We assumed that the database was fixed

collection of independent objects.

– No objects are added or deleted.

– No relationship between objects.

– No indexes.

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

Today‟s Class

• Lock Granularities

• Locking in B+Trees

• The Phantom Problem

• Transaction Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 4

CMU SCS

Lock Granularities

• When we say that a txn acquires a “lock”,

what does that actually mean?

– On a field? Record? Page? Table?

• Ideally, each txn should obtain fewest

number of locks that is needed…

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

Database Lock Hierarchy

Faloutsos/Pavlo CMU SCS 15-415/615 6

Database

Table 1 Table 2

Tuple 1

Attr 1

Tuple 2

Attr 2

Tuple n …

Attr n …

T1

CMU SCS

Example

• T1: Get the balance of Christos‟ shady off-

shore bank account.

• T2: Increase all account balances by 1%.

• Q: What locks should they obtain?

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Example

• Q: What locks should they obtain?

• A: Multiple

– Exclusive + Shared for leafs of lock tree.

– Special Intention locks for higher levels

Faloutsos/Pavlo CMU SCS 15-415/615 8

CMU SCS

Intention Locks

• Intention locks allow a higher level node to

be locked in S or X mode without having to

check all descendent nodes.

• If a node is in an intention mode, then

explicit locking is being done at a lower

level in the tree.

Faloutsos/Pavlo CMU SCS 15-415/615 9

CMU SCS

Intention Locks

• Intention-Shared (IS): Indicates explicit

locking at a lower level with shared locks.

• Intention-Exclusive (IX): Indicates locking

at lower level with exclusive or shared locks.

Faloutsos/Pavlo CMU SCS 15-415/615 10

CMU SCS

Intention Locks

• Shared+Intention-Exclusive (SIX): The

subtree rooted by that node is locked

explicitly in shared mode and explicit

locking is being done at a lower level with

exclusive-mode locks.

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

Compatibility Matrix

Faloutsos/Pavlo CMU SCS 15-415/615 12

IS IX S SIX X

IS ✔ ✔ ✔ ✔ X

IX ✔ ✔ X X X

S ✔ X ✔ X X

SIX ✔ X X X X

X X X X X X

T
1
 H

o
ld

s

T2 Wants

CMU SCS

Multiple Granularity Protocol

Faloutsos/Pavlo CMU SCS 15-415/615 13

IS

S IX

SIX

X

P
r

iv
il

e
g

e
s

Stronger

Weaker

CMU SCS

Locking Protocol

• Each txn obtains appropriate lock at highest

level of the database hierarchy.

• To get S or IS lock on a node, the txn must

hold at least IS on parent node.

– What if txn holds SIX on parent? S on parent?

• To get X, IX, or SIX on a node, must hold

at least IX on parent node.

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Example – Two-level Hierarchy

Faloutsos/Pavlo CMU SCS 15-415/615 15

Table R

Tuple 2 Tuple 1 Tuple n …

T1

S
T1

IS
T1

T2

X
T2 IX

T2

Read Write

CMU SCS

Example – Threesome

• Assume three txns execute at same time:

– T1: Scan R and update a few tuples.

– T2: Scan a portion of tuples in R.

– T3: Scan all tuples in R.

Faloutsos/Pavlo CMU SCS 15-415/615 16

Table R

Tuple 2 Tuple 1 Tuple n …

CMU SCS

Example – Threesome

Faloutsos/Pavlo CMU SCS 15-415/615 17

Table R

Tuple 1 Tuple n …

T1

S
T2

SIX
T1

T2

X
T1 IS

T2

Read Write

T3

Tuple 2

Read

S
T3

Read

Scan R and update a few tuples. Scan all tuples in R. Scan a portion of tuples in R.

CMU SCS

Example – Threesome

• T1: Get an SIX lock on R, then get X lock

on tuples that are updated.

• T2: Get an IS lock on R, and repeatedly get

an S lock on tuples of R.

• T3: Two choices:

– T3 gets an S lock on R.

– OR, T3 could behave like T2; can use lock

escalation to decide which.

Faloutsos/Pavlo CMU SCS 15-415/615 18

CMU SCS

Lock Escalation

• Lock escalation dynamically asks for

coarser-grained locks when too many low

level locks acquired.

• Reduces the number of requests that the

lock manager has to process.

Faloutsos/Pavlo CMU SCS 15-415/615 19

CMU SCS

Multiple Lock Granularities

• Useful in practice as each txn only needs a

few locks.

• Intention locks help improve concurrency:

– Intention-Shared (IS): Intent to get S lock(s)

at finer granularity.

– Intention-Exclusive (IX): Intent to get X

lock(s) at finer granularity.

– Shared+Intention-Exclusive (SIX): Like S

and IX at the same time.

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU SCS

Today‟s Class

• Lock Granularities

• Locking in B+Trees

• The Phantom Problem

• Transaction Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU SCS

Locking in B+Trees

• Q: What about locking indexes?

• A: They are not quite like other database

elements so we can treat them differently:

– It‟s okay to have non-serializable concurrent

access to an index as long as the accuracy of the

index is maintained.

Faloutsos/Pavlo CMU SCS 15-415/615 22

CMU SCS

Example

• T1 wants to insert in H

• T2 wants to insert in I

• Q: Why not plain 2PL?

• A: Because txns have

to hold on to their

locks for too long!

Faloutsos/Pavlo CMU SCS 15-415/615 23

G I H

F E D

C B

A

...

...

X
T1

X
T1

X
T1

X
T1

root

CMU SCS

Lock Crabbing

• Improves concurrency for B+Trees.

• Get lock for parent; get lock for child;

release lock for parent if “safe”.

• Safe Nodes: Any node that won‟t split or

merge when updated.

– Not full (on insertion)

– More than half-full (on deletion)

Faloutsos/Pavlo CMU SCS 15-415/615 24

CMU SCS

Lock Crabbing

• Search: Start at root and go down;

repeatedly,

– S lock child

– then unlock parent

• Insert/Delete: Start at root and go down,

obtaining X locks as needed. Once child is

locked, check if it is safe:

– If child is safe, release all locks on ancestors.

Faloutsos/Pavlo CMU SCS 15-415/615 25

CMU SCS

Example #1 – Search 38

Faloutsos/Pavlo CMU SCS 15-415/615 26

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

S

S

S

S

It‟s safe to release the
lock on A.

CMU SCS

38 41

Example #2 – Delete 38

Faloutsos/Pavlo CMU SCS 15-415/615 27

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

X

X

X

X
We know that C will not
need to merge with F, so
it‟s safe to release A+B.

We may need to
coalesce B, so we can‟t
release the lock on A.

CMU SCS

38 41

Example #3 – Insert 45

Faloutsos/Pavlo CMU SCS 15-415/615 28

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

X

X

X

X

E has room so it won‟t
split, so we can
release B+C.

We know that if C needs
to split, B has room so
it‟s safe to release A.

CMU SCS

38 41

Example #4 – Insert 25

Faloutsos/Pavlo CMU SCS 15-415/615 29

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

F C

G H I D E

35 10

X

X

X

X
25

31

We need to split H so we
need to keep the lock on

its parent node.

CMU SCS

Problems

• Q: What was the first step that all of the

update examples did on the B+Tree?

Faloutsos/Pavlo CMU SCS 15-415/615 30

20 A
X

Delete 38

20 A
X

Insert 45

20 A
X

Insert 25

CMU SCS

Problems

• Q: What was the first step that all of the

update examples did on the B+Tree?

• A: Locking the root every time becomes a

bottleneck with higher concurrency.

• Can we do better?

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU SCS

Better Tree Locking Algorithm

• Main Idea:

– Assume that the leaf is „safe‟, and use S-locks

& crabbing to reach it, and verify.

– If leaf is not safe, then do previous algorithm.

• Rudolf Bayer, Mario Schkolnick:

Concurrency of Operations on B-Trees.

Acta Inf. 9: 1-21 (1977)

Faloutsos/Pavlo CMU SCS 15-415/615 32

CMU SCS

Better Tree Locking Algorithm

• Search: Same as before.

• Insert/Delete:

– Set locks as if for search, get to leaf, and set X

lock on leaf.

– If leaf is not safe, release all locks, and restart

txn using previous Insert/Delete protocol.

• Gambles that only leaf node will be

modified; if not, S locks set on the first pass

to leaf are wasteful.
Faloutsos/Pavlo CMU SCS 15-415/615 33

CMU SCS

38 41

Example #2 – Delete 38

Faloutsos/Pavlo CMU SCS 15-415/615 34

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

S

S

S

X

D will not need to
coalesce, so we‟re safe!

CMU SCS

38 41

Example #4 – Insert 25

Faloutsos/Pavlo CMU SCS 15-415/615 35

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

F C

G H I D E

35 10

S

S

S

X
25

We need to split H so we
have to restart and re-
execute like before.

CMU SCS

Another Alternative

• Textbook has a third variation, that uses

lock-upgrades instead of restarting.

• This approach may lead to deadlocks.

Faloutsos/Pavlo CMU SCS 15-415/615 36

CMU SCS

Additional Points

• Q: Which order to release locks in multiple-

granularity locking?

• A: From the bottom up

• Q: Which order to release locks in tree-

locking?

• A: As early as possible to maximize

concurrency.

 Faloutsos/Pavlo CMU SCS 15-415/615 37

CMU SCS

Today‟s Class

• Lock Granularities

• Locking in B+Trees

• The Phantom Problem

• Transaction Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

Dynamic Databases

• Recall that so far we have only dealing with

transactions that read and update data.

• But now if we have insertions, updates, and

deletions, we have new problems…

Faloutsos/Pavlo CMU SCS 15-415/615 39

CMU SCS

T
I
M

E

The Phantom Problem

Faloutsos/Pavlo CMU SCS 15-415/615 40

BEGIN

COMMIT

T1 T2

Schedule

SELECT MAX(age)
 FROM sailors
 WHERE rating=1

BEGIN

COMMIT

INSERT INTO sailors
(age=96, rating=1)

SELECT MAX(age)
 FROM sailors
 WHERE rating=1

72

96

CMU SCS

How did this happen?

• Because T1 locked only existing records

and not ones under way!

• Conflict serializability on reads and writes

of individual items guarantees serializability

only if the set of objects is fixed.

• Solution?

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

Predicate Locking

• Lock records that satisfy a logical predicate:

– Example: rating=1.

• In general, predicate locking has a lot of

locking overhead.

• Index locking is a special case of predicate

locking that is potentially more efficient.

Faloutsos/Pavlo CMU SCS 15-415/615 42

CMU SCS

Index Locking

• If there is a dense index on the rating field

then the txn can lock index page containing

the data with rating=1.

• If there are no records with rating=1, the

txn must lock the index page where such a

data entry would be, if it existed.

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Locking without an Index

• If there is no suitable index, then the txn

must obtain:

– A lock on every page in the table to prevent a

record‟s rating from being changed to 1.

– The lock for the table itself to prevent records

with rating=1 from being added or deleted.

Faloutsos/Pavlo CMU SCS 15-415/615 44

CMU SCS

Today‟s Class

• Lock Granularities

• Locking in B+Trees

• The Phantom Problem

• Weaker Levels of Consistency

Faloutsos/Pavlo CMU SCS 15-415/615 45

CMU SCS

Weaker Levels of Consistency

• Serializability is useful because it allows

programmers to ignore concurrency issues.

• But enforcing it may allow too little

concurrency and limit performance.

• We may want to use a weaker level of

consistency to improve scalability.

Faloutsos/Pavlo CMU SCS 15-415/615 46

CMU SCS

Isolation Levels

• Controls the extent that a txn is exposed to

the actions of other concurrent txns.

• Provides for greater concurrency at the cost

of exposing txns to uncommitted changes:

– Dirty Reads

– Unrepeatable Reads

– Phantom Reads

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

Isolation Levels

• SERIALIZABLE: No phantoms, all reads

repeatable, no dirty reads.

• REPEATABLE READS: Phantoms may

happen.

• READ COMMITTED: Phantoms and

unrepeatable reads may happen.

• READ UNCOMMITTED: All of them

may happen.

Faloutsos/Pavlo CMU SCS 15-415/615 48

Is
o

la
ti

o
n

 (
H

ig
h
→

L
o

w
)

CMU SCS

Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 49

Dirty Read
Unrepeatable

Read Phantom

READ
UNCOMMITTED Maybe Maybe Maybe

READ
COMMITTED No Maybe Maybe

REPEATABLE
READ No No Maybe

SERIALIZABLE No No No

CMU SCS

Isolation Levels

• SERIALIZABLE: Obtain all locks first;

plus index locks, plus strict 2PL.

• REPEATABLE READS: Same as above,

but no index locks.

• READ COMMITTED: Same as above,

but S locks are released immediately.

• READ UNCOMMITTED: Same as above,

but allows dirty reads (no S locks).

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

SQL-92 Isolation Levels

• Default: Depends…

• Not all DBMS support all isolation levels in

all execution scenarios (e.g., replication).

Faloutsos/Pavlo CMU SCS 15-415/615 51

SET TRANSACTION ISOLATION LEVEL
 <isolation-level>;

CMU SCS

Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 52

Default Maximum

Actian Ingres 10.0/10S SERIALIZABLE SERIALIZABLE

Aerospike READ COMMITTED READ COMMITTED

Greenplum 4.1 READ COMMITTED SERIALIZABLE

MySQL 5.6 REPEATABLE READS SERIALIZABLE

MemSQL 1b READ COMMITTED READ COMMITTED

MS SQL Server 2012 READ COMMITTED SERIALIZABLE

Oracle 11g READ COMMITTED SNAPSHOT ISOLATION

Postgres 9.2.2 READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

ScaleDB 1.02 READ COMMITTED READ COMMITTED

VoltDB SERIALIZABLE SERIALIZABLE

Source: Peter Bailis, When is “ACID” ACID? Rarely. January 2013

CMU SCS

Access Modes

• You can also provide hints to the DBMS

about whether a txn will modify the

database.

• Only two possible modes:

– READ WRITE

– READ ONLY

Faloutsos/Pavlo CMU SCS 15-415/615 53

CMU SCS

SQL-92 Access Modes

• Default: READ WRITE

• Not all DBMSs will optimize execution if

you set a txn to in READ ONLY mode.

Faloutsos/Pavlo CMU SCS 15-415/615 54

SET TRANSACTION <access-mode>;

START TRANSACTION <access-mode>;

SQL-92

Postgres + MySQL 5.6

CMU SCS

Transaction Demo

Faloutsos/Pavlo CMU SCS 15-415/615 55

CMU SCS

Summary

• Multiple granularity locking: leads to few

locks, at appropriate levels

• Tree-structured indexes:

– Lock crabbing and safe nodes

• Important distinction:

– Multiple granularity locking releases locks

bottom-up.

– Tree-locking releases top-down to maximize

concurrency.

Faloutsos/Pavlo CMU SCS 15-415/615 56

CMU SCS

Summary

• The Phantom Problem occurs if

insertions/deletions

• Use Predicate locking to prevent this:

– Index Locking

– Table Locking

Faloutsos/Pavlo CMU SCS 15-415/615 57

