g CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#21: Concurrency Control
(R&G ch. 17)

‘g cMu scs
Today’s Class

« Serializability: concepts and algorithms

* Locking-based Concurrency Control:
—2PL
— Strict 2PL

» Deadlocks

Faloutsos/Pavlo CMU SCs 15-415/615 4

CMU sCSs

Formal Properties of Schedules

 There are different levels of serializability:

— Conflict Serlallzabllltyﬁ All DBMSs Support this.]
— View Serializability

This is harder but allows for
more concurrency.

CMU SCs 15-415/615 14

Faloutsos/Pavlo

CMU sCs

Conflicting Operations

» We need a formal notion of equivalence that
can be implemented efficiently...

— Base it on the notion of “conflicting” operations

« Definition: Two operations conflict if:
— They are by different transactions,

— They are on the same object and at least one of
them is a write.

Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU sCS

Conflict Serializable Schedules

» Two schedules are conflict equivalent iff:

— They involve the same actions of the same
transactions, and

— Every pair of conflicting actions is ordered the
same way.

» Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule.

Faloutsos/Pavlo CMU SCS 15-415/615

16

CMU sCs

Conflict Serializability Intuition

« A schedule S is conflict serializable if;

— You are able to transform S into a serial
schedule by swapping consecutive non-
conflicting operations of different transactions.

Faloutsos/Pavlo CMU SCs 15-415/615 17

CMU sCSs

Conflict Serializability Intuition

Schedule Serial Schedule
T1 T2 T1 T2

BEGIN BEGIN BEGIN

R(A) R(A)

W(A) W(A)

R(B) rR(A) R(B)

R(B) 4~ W R(A) — |w(B)

R(B) R(A) - COMMIT BEGIN

W(B) W(A) R(A)

COMMIT W(A)
R(B) R(B)
W(B) W(B)
COMMIT COMMIT

Faloutsos/Pavlo

CMU SCs 15-415/615

18

CMU sCs

Conflict Serializability Intuition

Schedule Serial Schedule
T1 T2 T1 T2
BEGIN BEGIN BEGIN
R(A) R(A)
R(A) W(A)
W(A) COMMIT BEGIN
W(A)4"y :—E R(A)
COMMIT COMMIT W(A)
¢ COMMIT

Faloutsos/Pavlo

CMU SCs 15-415/615

19

g CcMU sCS - - N
Serializability

* Q: Are there any faster algorithms to figure
this out other than transposing operations?

Faloutsos/Pavlo CMU SCS 15-415/615 20

‘g CMU SCS

Dependency Graphs
» One node per txn.

« Edge from Ti to Tj if: a m

— An operation Oi of Ti conflicts with an
operation Oj of Tj and
— Oi appears earlier in the schedule than Oj.

* Also known as a “precedence graph”

Faloutsos/Pavlo CMU SCs 15-415/615 21

g cMuU scs
Dependency Graphs

» Theorem: A schedule is conflict
serializable if and only if its dependency
graph is acyclic.

Faloutsos/Pavlo CMU SCS 15-415/615 22

g cMu scs
Example #1

Schedule Dependency Graph
T1 T2 A

BEGIN BEGIN
@.@
W(A)

‘\. A

L "4 A

B
W(B) .
/connn The cycle in the graph
R(B) reveals the problem. The
W(B) output of T1 depends on
COMMIT T2, and vice-versa.
Faloutsos/Pavlo CMU SCS 15-415/615 23

g cMu scs
Example #2 — Lost Update

Schedule Dependency Graph
T1 T2 A

BEGIN BEGIN
R(A)
A =Nl
R(A)
’Q‘ A= A-1 A
oW W(A)

COMMIT

W(A)
COMMIT

Faloutsos/Pavlo CMU SCS 15-415/615 24

‘g CMU SCS

Example #3 — Threesome

Schedule Dependency Graph
T1 T2 T3
BEGIN B
—2)
W(A) BEGIN
&\‘ R(A)
W(A) A

BEGIN | COMMIT
(19
W(B)

R(B)lCOMMIT

W(B)
COMMIT

Faloutsos/Pavlo CMU SCs 15-415/615 25

g cMuU scs
Example #3 — Threesome

» Q: Is this equivalent to a serial execution?

« A: Yes (T2, T1,T3)

— Notice that T3 should go after T2, although it
starts before it!

 Need an algorithm for generating serial
schedule from an acyclic dependency graph.
— Topological Sorting

Faloutsos/Pavlo CMU SCS 15-415/615 26

CMU sCs

Example #4 — Inconsistent Analysis

Schedule Dependency Graph
T1 T2 A
BEGIN BEGIN
R(A)
A = A-10
W(A)
\R(A) B
sum = A
R(B)
Ecto(sunD Is it possible to create a
RE) Ao schedule similar to this
W(B) that is “correct” but still
COMMIT not conflict serializable?
Faloutsos/Pavlo CMU SCS 15-415/615 27

CMU sCS

Example #4 — Inconsistent Analysis

Schedule Dependency Graph
T1 T2 A
BEGIN BEGIN
R(A)
A = A-10
W(A)
.‘~...*‘R(A) :
if(A>0): cnt++ |
R(B) l
if(B>0): cnt++ |
ECHO(cnt)
VA T2 counts the number of
W(B) active accounts.
COMMIT
Faloutsos/Pavlo CMU SCS 15-415/615 28

‘g CMU SCS

View Serializability

« Alternative (weaker) notion of
serializability.
 Schedules S1 and S2 are view equivalent if:

— If T1 reads initial value of A in S1, then T1 also
reads initial value of A in S2.

— If T1 reads value of A written by T2 in S1, then
T1 also reads value of A written by T2 in S2.

— If T1 writes final value of A in S1, then T1 also
writes final value of A in S2.

Faloutsos/Pavlo CMU SCs 15-415/615 29

%g cMuU scs - - - N
View Serializability

Schedule Dependency Graph
T1 T2 T3 A

BEGIN m A m

W(A)
W(A)
COMMIT | COMMIT | COMMIT A @ A

Faloutsos/Pavlo CMU SCS 15-415/615 30

g CMU SCS

View Serializability

Schedule Schedule
T1 T2 T3 T1 T2 T3

BEGIN BEGIN
R(A) BEGIN R(A)

W(A) W(A)

BEGIN view | | COMMIT
W(A) e BEGIN
G D= W(A)

COMMIT | COMMIT 'EOHHEF‘///A_ COMMIT

serializable schedules
“blind writes”

Allows all conflictw QD
+

J

Faloutsos/Pavlo CMU SCS 15-415/615 31

g CcMU sCS - - N
Serializability

* View Serializability allows (slightly) more

— But is difficult to enforce efficiently.
* Neither definition allows all schedules that
you would consider “serializable”.

— This is because they don’t understand the

meanings of the operations or the data (recall
example #4)

Faloutsos/Pavlo CMU SCS 15-415/615 32

schedules than Conflict Serializability does.

g cMu scs - - N
Serializability

« In practice, Conflict Serializability is what
gets used, because it can be enforced
efficiently.

— To allow more concurrency, some special cases

get handled separately, such as for travel
reservations, etc.

Faloutsos/Pavlo CMU SCS 15-415/615 33

% CMU sCS
Schedules

(AIIScheduIes s - — b
View Serializable

s N
Conflict Serializable

Serial

\ _J
- _/
\

Faloutsos/Pavlo 15-415/615

34

g cMu scs
Today’s Class

« Serializability: concepts and algorithms
 Locking-based Concurrency Control:

m) - 2PL

— Strict 2PL
e Deadlocks

Faloutsos/Pavlo CMU SCS 15-415/615

35

g CMU SCS

Executing without Locks

T1 T2
BEGIN
R(A)
BEGIN
o
W(A)‘k~¢EEF~
COMMIT
W(A)
COMMIT
Faloutsos/Pavlo CMU SCS 15-415/615 36

‘g CMU SCS

Executing with Locks

ir N
T1 T2 | 1Lock Manager
BEGIN ‘
LOCK(A) € >| Granted (T1—A)
R(A) BEGIN
LOCK (A) =t | Deniied!
W(A) . —~
UNLOCK (A)==={2) »| Released (T1—A)
COMMIT Vv
R(A) 4| Granted (T2—A)
W(A)
UNLOCK (A)=r===>| Released (T2—A)
COMMIT
§ y,
Faloutsos/Pavlo CMU SCS 15-415/615 37

g CMU SCS

Executing with Locks

« Q: If a txn only needs to read ‘A’, should it
still get a lock?

- A:Yes, but you can get a shared lock.

Faloutsos/Pavlo CMU SCS 15-415/615 38

g cMU scs
Lock Types

- Basic Types:
—S-LOCK - Shared Locks (reads)
— X-LOCK - Exclusive Locks (writes)

Compatibility Matrix
‘ Shared Exclusive

Shared v X
Exclusive X X

Faloutsos/Pavlo CMU SCS 15-415/615 39

g cMu scs
Executing with Locks

N
T1 T2 \m\Lock Manager
BEGIN
X-LOCK(A) »| Granted (T1—A)
R(A)
W(A)
UNROCK(A) »| Released (T1—A)
BEGIN
‘o X-LOCK (A) g===2| Granted (T2—A)
)o) m
UNLOCK (A)=r==>| Released (T2—A)
S-w0QA) 2| Granted (T1—A)
R(A)
UNLOCK (A) »| Released (T1—A)
COMMIT COMMIT
Faloutsos/Pavlo CMU SCS 15-415/615 40

‘g CMU SCS

Concurrency Control

ensures that txns execute correctly.

Faloutsos/Pavlo CMU SCs 15-415/615

- We need to use a well-defined protocol that

41

g CcMU sCS
Two-Phase Locking

» Phase 1: Growing

— Each txn requests the locks that it needs from
the DBMS’s lock manager.

— The lock manager grants/denies lock requests.
» Phase 2: Shrinking

— The txn is allowed to only release locks that it
previously acquired. It cannot acquire new
locks.

Faloutsos/Pavlo CMU SCS 15-415/615 42

g CMU SCS

Two-Phase Locking

» The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

Transaction Lifetime

of Locks

Growing Phase

Shrinking Phase

Faloutsos/Pavlo

43

0

Two-Phase Locking Executing with 2PL
* The txn is not allow_ed to acqui_re{upgrade T1 T \ﬁ‘\l_ock Manager |
locks after the growing phase finishes. BEGIN X
X-LOCK(A) »| Granted (T1—A)
R(A)
Transaction Lifetime WA BEGIN
- - X-LOCK (A)===>| Denied!
[2PL Violation!] R(A) .
i UNLOCK (A) == »| Released (T1—A)
= COMMIT v
- W(A) 4mmmmmtme| Granted (T2—A)
UNLOCK (A)=====>| Released (T2—A)
COMMIT S y
Growing Phase Shrinking Phase
Faloutsos/Pavlo 44 Faloutsos/Pavlo CMU SCS 15-415/615 45
Lock Management Lock Management
 Lock and unlock requests handled by the » When lock request arrives see if any other
DBMS’s lock manager (LM). txn holds a conflicting lock.
+ LM contains an entry for each currently — If not, create an entry and grant the lock
held lock: — Else, put the requestor on the wait queue
— Pointer to a list of txns holding the lock. + All lock operations must be atomic.
— The type of lock held (shared or exclusive). « Lock upgrade: The txn that holds a shared
— Pointer to queue of lock requests. lock upgrade to hold an exclusive lock.
Faloutsos/Pavlo CMU SCS 15-415/615 46 Faloutsos/Pavlo CMU SCS 15-415/615 47

525: CcMU sCS
Two-Phase Locking

« 2PL on its own is sufficient to guarantee
conflict serializability (i.e., schedules whose
precedence graph is acyclic), but, it is
subject to cascading aborts.

of Locks

Growing Phase

Faloutsos/Pavlo

Shrinking Phase

49

33!; cMU scs
2PL — Cascading Aborts

Schedule

T1 T2

BEGIN BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

schedule in 2PL, but we

This is a permissible
have to abort T2 too.

s

X-LOCK(A)
R(A) ——r ..
W(A) [~ _This is all wasted work!]

R(B)

G

Faloutsos/Pavlo CMU SCs 15-415/615 50

g CMU SCS -
2PL Observations

There are schedules that are serializable but
would not be allowed by 2PL.

Locking limits concurrency.
May lead to deadlocks.

May still have “dirty reads”
— Solution: Strict 2PL

Faloutsos/Pavlo CMU SCS 15-415/615 51

Vg cMU scs
Strict Two-Phase Locking

» The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

+ Allows only conflict serializable schedules,
but it is actually stronger than needed.

Release all Iocks\
at end of txn.

of Locks

Growing Phase

Faloutsos/Pavlo

Shrinking Phase

52

g cMu scs
Strict Two-Phase Locking

» A schedule is strict if a value written by a
txn is not read or overwritten by other txns
until that txn finishes.

 Advantages:
— Recoverable.
— Do not require cascading aborts.

— Aborted txns can be undone by just restoring
original values of modified tuples.

Faloutsos/Pavlo CMU SCS 15-415/615 53

‘g cMU scs
Examples

» T1: Move 850 from Christos’ account to his
bookie’s account.

» T2: Compute the total amount in all
accounts and return it to the application.

 Legend:
— A — Christos’ account.
— B — The bookie’s account.

Faloutsos/Pavlo CMU SCs 15-415/615 54

%g cMuU scs
Non-2PL Example

Tl T2 .
BEGIN BEGIN Initial State
X-LOCK(A) A=100. B=100
R(A) S-LOCK(A))

A=A-50 .
W(A) ®
UNLOCK(A) | W
R(A) T2 Output
UNLOCK (A)
S-LOCK(B) 150
X-LOCK(B)

. R(B)

o
R(B) (ECHO (A+B
B=B+50
W(B)

UNLOCK (B)
COMMIT)

g CMU SCS

2PL Example
T1 T2 ..
BEGIN BEGIN Initial State
X-LOCK(A) A=100, B=100
R(A) S-LOCK(A) ’
A=A-50 .
W(A) .
X-LOCK (B) -
UNLOCK(A) | W T2 Output
R(A)
S-LOCK(B) 200
R(B) i
B=B+50 .
W(B) .
UNLOCK(B) | W
COMMIT R(B)
UNLOCK (A)
UNLOCK (B)
ECHO (A+B)
COMMIT 56

g CMU SCS

Strict 2PL Example
Tl T2 .
BEGIN BEGIN Initial State
X-LOCK(A) A:].OO B:lOO
R(A) S-LOCK(A) '
A=A-50 =
W(A))
Ry | T2 Output
B=B+50 n
wm; . 200

UNLOCK (A) \ 4
UNLOCK(B) |R(A)
COMMIT S-LOCK(B)
R(B)

ECHO (A+B)
UNLOCK(A)
UNLOCK(B)
COMMIT

57

‘g cMU scs
Strict Two-Phase Locking

* Q: Why is avoiding “dirty reads” important?

T1 T2
BEGIN
%10::> R(A)
12 W(A) BEGIN
.\REA; =5$12
W(A
OQ‘ COMMIT
R(B)
ABORT ’
Faloutsos/Pavlo CMU SCS 15-415/615 58

%g cMuU scs
Strict Two-Phase Locking

* Q: Why is avoiding “dirty reads” important?
« A: If a txn aborts, all actions must be

undone. Any txn that read modified data
must also be aborted.

Faloutsos/Pavlo CMU SCS 15-415/615 59

% cMU scs
Strict Two-Phase Locking

« Txns hold all of their locks until commit.

+ Good:
— Avoids “dirty reads” etc

» Bad:

— Limits concurrency even more
— And still may lead to deadlocks

Faloutsos/Pavlo CMU SCS 15-415/615 60

% CMU SCS

g CMU SCS

Schedules Two-Phase Locking
(AII Schedules)
(" View Serializable » 2PL seems to work well.
: — « Is that enough? Can we just go home now?
Conflict Serializable
Avoid
Cascading
Abort
\ Y,
\ _/
Faloutsos/Pavlo 15-415/615 61 Faloutsos/Pavlo CMU SCS 15-415/615 62
Shit Just Got Real Deadlocks
T1 T \Ff},_ock Manager + Deadlock: Cycle of transactions waiting for
BEGIN BEGIN ; locks to be released by each other.
X-LOCK(A) 2| Granted (T1—A) . .
oo ;E;?CK(B) == Granted (T2—B) » Two ways of dealing with deadlocks:
g%. S-LOCK(A) t==>|Denied! — Deadlock prevention
X-LOCK(B) tmmmirl »| Denied! — Deadlock detection
« Many systems just punt and use timeouts
. — What are the dangers with this approach?
v ; . J

Faloutsos/Pavlo

cMuU

SCS 15-415/615

63

Faloutsos/Pavlo CMU SCS 15-415/615 64

g CcMU sCS
Today’s Class

« Serializability: concepts and algorithms

 One solution: Locking
- 2PL
— variations

» Deadlocks:

mm) — Detection

— Prevention

Faloutsos/Pavlo CMU SCS 15-415/615

65

g CMU SCS

Deadlock Detection

« The DBMS creates a waits-for graph:
— Nodes are transactions
— Edge from Ti to Tj if Ti is waiting for Tj to
release a lock
» The system periodically check for cycles in
waits-for graph.

Faloutsos/Pavlo CMU SCs 15-415/615 66

g CMU SCS

Deadlock Detection

Schedule Waits-for Graph
T1 T2 T3
BEGIN BEGIN BEGIN
S-LOCK(A)
S-LOCK(D)
XNO0CK(B)
S-LOCK(C) @
S-LOCK(B)

X-LOCK(
X-LOCK(A)

Faloutsos/Pavlo CMU SCS 15-415/615

67

g CMU SCS

Deadlock Detection

» How often should we run the algorithm?
« How many txns are typically involved?
« What do we do when we find a deadlock?

Faloutsos/Pavlo CMU SCS 15-415/615 68

g cMu scs -
Deadlock Handling

Waits-for Graph

* Q: What do we do?

e A: Select a “victim” and
rollback it back to break the
deadlock.

Faloutsos/Pavlo CMU SCS 15-415/615 69

g cMU scs -
Deadlock Handling

Waits-for Graph
« Q: Which one do we choose? @)
* A: It depends... ‘

— By age (lowest timestamp) @

— By progress (least/most queries executed)

— By the # of items already locked

— By the # of txns that we have to rollback with it

» We also should consider the # of times a txn
has been restarted in the past.

Faloutsos/Pavlo CMU SCs 15-415/615 70

g cMuU scs .
Deadlock Handling

Waits-for Graph
* Q: How far do we rollback?
* A: It depends...

L
— Completely @

— Minimally (i.e., just enough to release locks)

Faloutsos/Pavlo CMU SCS 15-415/615 71

g cMu scs
Today’s Class

« Serializability: concepts and algorithms

 One solution: Locking
— 2PL
— variations

« Deadlocks:
— Detection

mm) - Prevention

Faloutsos/Pavlo CMU SCS 15-415/615 72

CMU sCS

Deadlock Prevention

» When a txn tries to acquire a lock that is held
by another txn, kill one of them to prevent a
deadlock.

» No waits-for graph or detection algorithm.

Faloutsos/Pavlo CMU SCS 15-415/615 73

CMU sCs

Deadlock Prevention

» Assign priorities based on timestamps:
— Older — higher priority (e.g., T1>T2)
» Two different prevention policies:

— Wait-Die: If T1 has higher priority, T1 waits for
T2; otherwise T1 aborts (“old wait for young”)

— Wound-Wait: If T1 has higher priority, T2
aborts; otherwise T1 waits (“young wait for old”)

Faloutsos/Pavlo CMU SCs 15-415/615 74

CMU sCSs

Deadlock Prevention
BEG;I,;l T2 Wait-Die Wound-Wait

BEGIN .
X-LOCK(A) » T1 walits T2 aborted
X-LOCK (A)=™ :

T1 T2
BEGIN gy Aai
X-LOCK(A) Wait-Die Wound-Wait
: BEGIN » .
\~X_LOCK(A) T2 aborted T2 waits
Faloutsos/Pavlo CMU SCS 15-415/615 75

CMU sCs

Deadlock Prevention

Q: Why do these schemes guarantee no
deadlocks?

A: Only one “type” of direction allowed.

Q: When a transaction restarts, what is its
(new) priority?

A: Its original timestamp. Why?

Faloutsos/Pavlo CMU SCS 15-415/615 76

g CMU SCS

Performance Problems

 Executing more txns can increase the

throughput.

« But there is a tipping point where adding
more txns actually makes performance

WOIrSE.

g cMu scs -
Lock Thrashing

« When a txn holds a lock, other txns have to
wait for it to finish.

« If you have a lot of txns with a lot of locks,
then you will have a lot of waiting.

* A lot of waiting means txns take longer and

hold their locks longer...
Faloutsos/Pavlo CMU SCS 15-415/615 7 Faloutsos/Pavlo CMU SCS 15-415/615 78
Lock Thrashing Locking in Practice

No Locks With Locks * You typically don’t set locks manually.
_ 3. _ 14 . . : : . . .
gif, 1al « Sometimes you will need to provide the
£ gl DBMS with hints to help it to improve
g1s 508 concurrency.
S 1.0 S 0.4f
Zos £ 02) « Also useful for doing major changes.

00200 400 600 800 1000 1200 000200 400 600 800 1000 1200

of Concurrent Txns

Faloutsos/Pavlo

of Concurrent Txns

CMU SCs 15-415/615 79

Faloutsos/Pavlo CMU SCS 15-415/615 80

g CMU sCS
LOCK TABLE

Postgres

LOCK TABLE <table> IN <mode> MODE;

MySQL

LOCK TABLE <table> <mode>;

 Explicitly locks a table.

* Not part of the SQL standard.
— Postgres Modes: SHARE, EXCLUSIVE
— MySQL Modes: READ, WRITE

Faloutsos/Pavlo CMU SCS 15-415/615

81

CMU sCs

SELECT...FOR UPDATE

SELECT * FROM <table>
WHERE <qualification> FOR UPDATE;

» Perform a select and then sets an exclusive
lock on the matching tuples.

 Can also set shared locks:
— Postgres: FOR SHARE
— MySQL: LOCK IN SHARE MODE

Faloutsos/Pavlo CMU SCs 15-415/615 82

%g CcMU sCS .
Locking Demo

Faloutsos/Pavlo CMU SCS 15-415/615

83

g CMU SCS

Concurrency Control Summary

« Conflict Serializability «» Correctness

« Automatically correct interleavings:
— Locks + protocol (2PL, S2PL ...)
— Deadlock detection + handling
— Deadlock prevention

» Big Assumption: The database is fixed.
— That is, objects are not inserted or deleted.

Faloutsos/Pavlo CMU SCS 15-415/615 84

