
CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#16: Schema Refinement &

Normalization

CMU SCS

Administrivia

• HW5 is due today.

• HW6 is due Tuesday March 24th.

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Database Design

• How do we design a “good” database?

– Want to ensure the integrity of the data.

– Want to get good performance.

• Relational DBMS vs. NoSQL DBMS

Faloutsos/Pavlo CMU SCS 15-415/615 3

This Week

Next Week

CMU SCS

Example

Faloutsos/Pavlo CMU SCS 15-415/615 4

studentId courseId room grade name address

123 15-415 GHC 6115 A Christos Pittsburgh

456 15-721 GHC 8102 B Tupac Los Angeles

789 15-415 GHC 6115 A Obama Chicago

012 15-415 GHC 6115 A Waka Flocka Atlanta

Students(studentId, courseId, room, grade, name, address)

CMU SCS

Redundancy Problems

• Update Anomalies

– If the room number changes, we need to make

sure that we change all students records.

• Insert Anomalies

– May not be possible to add a student unless

they’re enrolled in a course.

• Delete Anomalies

– If all the students enrolled in a course are

deleted, then we lose the room number.

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

Example

Faloutsos/Pavlo CMU SCS 15-415/615 6

STUDENTS COURSES

This Week: why this decomposition is better
and how to find it.

studentId name address

123 Christos Pittsburgh

456 Tupac Los Angeles

789 Obama Chicago

012 Waka Flocka Atlanta

studentId courseId grade

123 15-415 A

456 15-721 B

789 15-415 A

012 15-415 A

ROOMS
courseId room

15-415 GHC 6115

15-721 GHC 8102

CMU SCS

Today’s Class

• Motivation

• Functional Dependencies

• Armstrong’s Axioms

• Closures

• Canonical Cover

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Functional Dependencies

• A form of a constraint:

– Part of the schema to define a valid instance.

• Definition: X→Y

– The value of ‘X’ functionally defines the

value of ‘Y’.

Faloutsos/Pavlo CMU SCS 15-415/615 8

CMU SCS

Functional Dependencies

• Formal Definition:

– X→Y ⇒ (t1[x] = t2[x] ⇒ t1[y] = t2[y])

– If two tuples agree on the ‘X’ attribute, then

they must agree on the ‘Y’ attribute too.

Faloutsos/Pavlo CMU SCS 15-415/615 9

studentId→name
studentId name address

123 Christos Pittsburgh

456 Tupac Los Angeles

789 Obama Chicago

012 Waka Flocka Atlanta

CMU SCS

Functional Dependencies

• FD is a constraint, that it says that it allows

instances for which where the FD holds.

• You can check if an FD is violated by an

instance, but cannot prove that an FD is part

of the schema using an instance.

Faloutsos/Pavlo CMU SCS 15-415/615 10

studentId→name
studentId name address

123 Christos Pittsburgh

456 Tupac Los Angeles

789 Obama Chicago

012 Waka Flocka Atlanta

address→name ? ?

CMU SCS

Functional Dependencies

• Note that the two FDs X→Y and X→Z can

be written in shorthand as X→YZ.

• But XY→Z is not the same as the two FDs

X→Z and Y→Z.

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

Defining FDs in SQL

Faloutsos/Pavlo CMU SCS 15-415/615 12

CREATE ASSERTION student-name
 CHECK (NOT EXISTS
 (SELECT * FROM students AS s1,
 students AS s2
 WHERE s1.studentId = s2.studentId
 AND s1.name <> s2.name))

Make sure that no two students ever have
the same id without the same name.

FD: studentId → name

CMU SCS

Combining FDs in SQL

Faloutsos/Pavlo CMU SCS 15-415/615 13

CREATE ASSERTION student-name-address
 CHECK (NOT EXISTS
 (SELECT * FROM students AS s1,
 students AS s2
 WHERE s1.studentId = s2.studentId
 AND ((s1.name <> s2.name
 OR (s1.address <> s2.address)))

Make sure that no two students ever have the
same id without the same name and address.

FD1: studentId → name

FD2: studentId → address

CMU SCS

SQL Assertions

• WARNING: No major DBMS supports

SQL-92 assertions.

• Why?

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Defining FDs in IBM DB2

Faloutsos/Pavlo CMU SCS 15-415/615 15

CREATE TABLE students (
 studentId INT PRIMARY KEY,
 name VARCHAR(32),
 ⋮
 CONSTRAINT student_name
 CHECK (name)
DETERMINED BY (studentId));

FD: studentId → name

http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_9.7.0/com.ibm.db2.luw.sql

.ref.doc/doc/r0000927.html?cp=SSEPGG_9.7.0%2F2-10-6-90&lang=en

CMU SCS

Why Should I Care?

• FDs seem important, but what can we

actually do with them?

• They allow us to decide whether a database

design is correct.

– Note that this different then the question of

whether it’s a good idea for performance…

Faloutsos/Pavlo CMU SCS 15-415/615 16

CMU SCS

Implied Dependencies

Faloutsos/Pavlo CMU SCS 15-415/615 17

studentId courseId grade name address

123 15-415 A Christos Pittsburgh

456 15-721 B Tupac Los Angeles

789 15-415 A Obama Chicago

012 15-415 A Waka Flocka Atlanta

Students(studentId, courseId, grade, name, address)

studentId → name, address

studentId, courseId → grade

Provided FDs
studentId, courseId →

 grade, name, address

studentId, courseId →

 studentId

Implied FDs

These holds for any instance!

CMU SCS

Another Example

Faloutsos/Pavlo CMU SCS 15-415/615 18

name color category dept price

Gizmo Green Gadget Toys 9.99

Widget Black Gadget Toys 49.99

Gizmo Green Squirrels Garden 19.99

Product(name, color, category, dept, price)

name → color

category → dept

color, category → price

Provided FDs
name, category → price

Implied FDs

CMU SCS

Implied Dependencies

• Q: Given a set of FDs {f1, … fn}, how do

we decide whether FD g holds?

• A: Compute the closure using

Armstrong’s Axioms (chapter 19.3):

– Reflexivity

– Augmentation

– Transitivity

Faloutsos/Pavlo CMU SCS 15-415/615 19

The set of all implied FDs

CMU SCS

Armstrong’s Axioms – Reflexivity

• If X ⊇ Y, then X→Y.

• Example: studentId, name → studentId

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU SCS

Armstrong’s Axioms – Augmentation

• If X→Y, then XZ→YZ for any Z.

• Example: If studentId → name,

then studentId, grade → name, grade

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU SCS

Armstrong’s Axioms – Transitivity

• If X→Y and Y→Z, then X→Z.

• Example: If studentId→address and

address →taxRate, then studentId→taxRate

Faloutsos/Pavlo CMU SCS 15-415/615 22

CMU SCS

Armstrong’s Axioms

• Reflexivity:

– X ⊇ Y ⇒ X→Y

• Augmentation:

– X→Y ⇒ XZ→YZ

• Transitivity:

– (X→Y) ∧ (Y→Z) ⇒ X→Z

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

Additional Rules

• Union:

– (X→Y) ∧ (X→Z) ⇒ X→YZ

• Decomposition:

– X→YZ ⇒ (X→Y) ∧ (X→Z)

• Pseudo-transitivity:

– (X→Y) ∧ (YW→Z) ⇒ XW→Z

Faloutsos/Pavlo CMU SCS 15-415/615 24

CMU SCS

Closures

• Given a set F of FDs {f1, … fn}, we define

the closure F+ is the set of all implied FDs.

studentId, courseId → grade

studentId → name, address F
studentId, name → studentId

studentId → name

studentId → address

studentId, grade → name, grade

studentId, courseId→ grade, name

 ⋮

Students(studentId, courseId, grade, name, address)

Augmentation

Reflexivity

Decomposition

Decomposition

Transitivity

F+:

CMU SCS

Another Example

Faloutsos/Pavlo CMU SCS 15-415/615 26

Product(name, color, category, dept, price)

name → color

category → dept

color, category → price

Provided FDs

color, category → color, price

color, category → color, category, price

name, category → color, category, price

name, category → name, color, category, dept, price

Implied FDs Reflexivity

Reflexivity

Transitivity

Reflexivity

CMU SCS

Why Do We Need the Closure?

• With closure we can find all FD’s easily.

• We can then compute the attribute closure

– For a given attribute X, the attribute closure X+

is the set of all attributes such that X→A can be

inferred using the Armstron Axioms.

• To check if X→A,

– Compute X+

– Check if A ∊ X+

Faloutsos/Pavlo CMU SCS 15-415/615 27

CMU SCS

But Again, Why Should I Care?

• Maintaining the closure at runtime is

expensive:

– The DBMS has to check all the constraints for

every insert, update, delete operation.

• We want a minimal set of FDs that was

enough to ensure correctness.

Faloutsos/Pavlo CMU SCS 15-415/615 28

CMU SCS

Canonical Cover

• Given a set F of FDs {f1, … fn}, we define

the closure Fc is the minimal set of all FDs.

Faloutsos/Pavlo CMU SCS 15-415/615 29

studentId, courseId → grade

studentId→ name, address

studentId, name→ name, address

studentId, courseId→ grade, name

F
Fc

CMU SCS

Canonical Cover Definition

• Three properties for the canonical cover Fc:

1. The RHS of every FD is a single attribute.

2. The closure of Fc is identical to the closure

of F (i.e., Fc = F are equivalent).

3. The Fc is minimal (i.e., if we eliminate any

attribute from the LHS or RHS of a FD,

property #2 is violated.

Faloutsos/Pavlo CMU SCS 15-415/615 30

CMU SCS

Canonical Cover Definition

• For #3, we need to eliminate all extraneous

attributes from our set of FDs.

– An attribute is “extraneous” if the closure is the

same, before and after its elimination.

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU SCS

Computing the Canonical Cover

• Given a set F of FDs, examine each FD:

– Drop extraneous LHS or RHS attributes; or

redundant FDs

– Make sure that FDs have a single attribute in

their RHS

• Repeat until no change

Faloutsos/Pavlo CMU SCS 15-415/615 32

CMU SCS

Computing the Canonical Cover

Faloutsos/Pavlo CMU SCS 15-415/615 33

Split (2) AB → C (1)

A → BC (2)

B → C (3)

A → B (4)

F:
AB → C (1)

A → B (2’)

A → C (2’’)

B → C (3)

A → B (4)

F1:

CMU SCS

Computing the Canonical Cover

Faloutsos/Pavlo CMU SCS 15-415/615 34

Eliminate (2’) AB → C (1)

A → C (2’’)

B → C (3)

A → B (4)

F2:
AB → C (1)

A → B (2’)

A → C (2’’)

B → C (3)

A → B (4)

F1:

CMU SCS

Computing the Canonical Cover

Faloutsos/Pavlo CMU SCS 15-415/615 35

Eliminate (2’’) AB → C (1)

B → C (3)

A → B (4)

F3:
AB → C (1)

A → C (2’’)

B → C (3)

A → B (4)

F2:

Implied by (4)+(3)
through transitivity

CMU SCS

Computing the Canonical Cover

Faloutsos/Pavlo CMU SCS 15-415/615 36

Eliminate A
from (1) B → C (1’)

B → C (3)

A → B (4)

F4:
AB → C (1)

B → C (3)

A → B (4)

F4:

X

Implied by (4)+(3)

CMU SCS

Computing the Canonical Cover

Faloutsos/Pavlo CMU SCS 15-415/615 37

Eliminate (1’) B → C (3)

A → B (4)

F5:
B → C (1’)

B → C (3)

A → B (4)

F4:

✓Nothing is extraneous

✓All RHS are single attributes

✓Final & original set of FDs are
 equivalent (same closure)

Fc

CMU SCS

No Really, Why Should I Care?

• The canonical cover is the minimum

number of assertions that we need to

implement to make sure that our database

integrity is correct.

• Allows us to find the super key for a

relation.

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

Relational Model: Keys

• Super Key:

– Any set of attributes in a relation that

functionally determines all attributes in the

relation.

• Candidate Key:

– Any super key such that the removal of any

attribute leaves a set that does not functionally

determine all attributes.

Faloutsos/Pavlo CMU SCS 15-415/615 39

CMU SCS

Relational Model: Keys

• Super Key:

– Set of fields for which there are no two distinct

tuples that have the same values for the

attributes in this set.

• Candidate Key:

– Set of fields that uniquely identifies a tuple

according to a key constraint.

Faloutsos/Pavlo CMU SCS 15-415/615 40

CMU SCS

But Why Care About Super Keys?

• It is going to help us determine whether it’s

okay to split a table into multiple sub-tables.

• Super keys ensure that we are able to

recreate the original relation through joins.

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

Super Key Example

Faloutsos/Pavlo CMU SCS 15-415/615 42

name color category dept price

Gizmo Green Gadget Toys 9.99

Widget Black Gadget Toys 49.99

Gizmo Green Squirrels Garden 19.99

Product(name, color, category, dept, price)

name → color

category → dept

color, category → price

Provided FDs
name, category → price

Implied FDs

Super Key! Super Key!

CMU SCS

Summary

• How do we guarantee that F = F’?

– Closures

• How do we find a minimal F’ for F?

– Canonical Cover

Faloutsos/Pavlo CMU SCS 15-415/615 43

