

• Armstrong's Axioms

CMU SCS 15-415/615

• Closures

Faloutsos/Pavlo

Canonical Cover

Faloutsos/Pavlo

7

• Definition: $X \rightarrow Y$

value of 'Y'.

CMU SCS 15-415/615

- The value of 'X' functionally defines the

Functional Dependencies	Functional Dependencies
<section-header><section-header><equation-block><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></equation-block></section-header></section-header>	 FD is a constraint, that it says that it allows instances for which where the FD holds. You can check if an FD is violated by an instance, but cannot prove that an FD is part of the schema using an instance. <u>studentid name address</u> <u>christos Pittsburgh</u> <u>christos Chicago</u> <u>vaka Flocka Atlanta</u>
 ➤ Functional Dependencies Note that the two FDs X→Y and X→Z can be written in shorthand as X→YZ. But XY→Z is <i>not</i> the same as the two FDs X→Z and Y→Z. 	CMUSCS Defining FDs in SQL CREATE ASSERTION student-name CHECK (NOT EXISTS (SELECT * FROM students AS s1, students AS s2 WHERE s1.studentId = s2.studentId AND s1.name $<>$ s2.name)) FD: studentId \rightarrow name

Make sure that no two students ever have the same id without the same name.

Faloutsos/Pavlo

CMU SCS 15-415/615

11

Faloutsos/Pavlo

CMU SCS 15-415/615

Product(name, color, category, dept, price)

name	color	category	dept	price
Gizmo	Green	Gadget	Toys	9.99
Widget	Black	Gadget	Toys	49.99
Gizmo	Green	Squirrels	Garden	19.99

- With closure we can find all FD's easily.
- We can then compute the **attribute closure**
 - For a given attribute X, the attribute closure X+ is the set of all attributes such that $X \rightarrow A$ can be inferred using the Armstron Axioms.
- To check if $X \rightarrow A$.
 - Compute X+
 - Check if $A \in X+$

27

But Again, Why Should I Care?

- Maintaining the closure at runtime is expensive:
 - The DBMS has to check all the constraints for every insert, update, delete operation.
- We want a **minimal set of FDs** that was enough to ensure correctness.

```
Faloutsos/Pavlo
```

CMU SCS 15-415/615

Relational Model: Keys

• Super Key:

X

- Any set of attributes in a relation that functionally determines all attributes in the relation.
- Candidate Key:
 - Any super key such that the removal of any attribute leaves a set that does not functionally determine all attributes.

Faloutsos/Pavlo

CMU SCS 15-415/615

39

CMU SCS

X

Relational Model: Keys

• Super Key:

- Set of fields for which there are no two distinct tuples that have the same values for the attributes in this set.
- Candidate Key:
 - Set of fields that uniquely identifies a tuple according to a key constraint.

```
Faloutsos/Pavlo
```

CMU SCS 15-415/615

But Why Care About Super Keys?

Ľ

Faloutsos/Pavlo

- It is going to help us determine whether it's okay to split a table into multiple sub-tables.
- Super keys ensure that we are able to recreate the original relation through joins.

CMU SCS 15-415/615

41

	color	category	dept	price
Gizmo	Green	Gadget	Toys	9.99
Widget	Black	Gadget	Toys	49.99
Gizmo	Green	Squirrels	Garden	19.99
ed FD → color ry – de categor	s ept y → pric	e	mplied] name, ca	FDs tegory

