
Faloutsos/Pavlo CMU - 15-415/615

1

CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#14: Implementation of

Relational Operations

CMU SCS

Last Class

• Catalog

• Intro to Operator Evaluation

• Typical Query Optimizer

• Projection/Aggregation

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Today‟s Class

• More on Indexes

• Explain

• Joins

• Mid-term Review (Christos)

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

Access Paths

• How the DBMS retrieves tuples from a

table for a query plan.

– File Scan (aka Sequential Scan)

– Index Scan (Tree, Hash, List, …)

• Selectivity of an access path:

– % of pages we retrieve

– e.g., Selectivity of a hash index, on range

query: 100% (no reduction!)

Faloutsos/Pavlo CMU SCS 15-415/615 4

Faloutsos/Pavlo CMU - 15-415/615

2

CMU SCS

Selection Conditions

• A B-tree index matches (a conjunction of)

terms that involve only attributes in a prefix

of the search key.

– Index on <a,b,c> matches (a=5 AND b=3), but

not b=3.

• For Hash index, we must have all attributes

in search key.

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

B+Tree Prefix Search

Faloutsos/Pavlo CMU SCS 15-415/615 6

yz

xx xy zy zz

Key = xy

Key = _y

?

CMU SCS

Partial Indexes

• Create an index on a subset of the entire

table. This potentially reduces its size and

the amount of overhead to maintain it.

Faloutsos/Pavlo CMU SCS 15-415/615 7

CREATE INDEX idx_foo
 ON foo (a, b)
 WHERE c = ‘WuTang’

SELECT b FROM foo
 WHERE a = 123 AND c = ‘WuTang’

CMU SCS

Covering Indexes

• If all of the fields needed to process the

query are available in an index, then the

DBMS does not need to retrieve the tuple.

Faloutsos/Pavlo CMU SCS 15-415/615 8

SELECT b FROM foo WHERE a = 123

CREATE INDEX idx_foo
 ON foo (a, b)

Faloutsos/Pavlo CMU - 15-415/615

3

CMU SCS

Index Include Columns

• Embed additional columns in indexes to

support index-only queries.

• Not part of the search key.

Faloutsos/Pavlo CMU SCS 15-415/615 9

SELECT b FROM foo
 WHERE a = 123 AND c = ‘WuTang’

CREATE INDEX idx_foo
 ON foo (a, b)
 INCLUDE (c)

CMU SCS

Today‟s Class

• More on Indexes

• Explain

• Joins

• Mid-term Review (Christos)

Faloutsos/Pavlo CMU SCS 15-415/615 10

CMU SCS

EXPLAIN

• When you precede a SELECT statement

with the keyword EXPLAIN, the DBMS

displays information from the optimizer

about the statement execution plan.

• The system “explains” how it would

process the query, including how tables are

joined and in which order.

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

EXPLAIN

Faloutsos/Pavlo CMU SCS 15-415/615 12

Pseudo Query Plan:

SELECT bid, COUNT(*) AS cnt
 FROM Reserves
 GROUP BY bid
 ORDER BY cnt

RESERVES

GROUP BY

COUNT

SORT

p bid

Faloutsos/Pavlo CMU - 15-415/615

4

CMU SCS

EXPLAIN

Faloutsos/Pavlo CMU SCS 15-415/615 13

EXPLAIN SELECT bid, COUNT(*) AS cnt
 FROM Reserves
 GROUP BY bid
 ORDER BY cnt

Postgres v9.1

CMU SCS

EXPLAIN

Faloutsos/Pavlo CMU SCS 15-415/615 14

EXPLAIN SELECT bid, COUNT(*) AS cnt
 FROM Reserves
 GROUP BY bid
 ORDER BY cnt

MySQL v5.5

CMU SCS

EXPLAIN ANALYZE

• ANALYZE option causes the statement to be

actually executed.

• The actual runtime statistics are displayed.

• This is useful for seeing whether the

planner's estimates are close to reality.

• Note that ANALYZE is a Postgres idiom.

Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU SCS

EXPLAIN ANALYZE

Faloutsos/Pavlo CMU SCS 15-415/615 16

EXPLAIN ANALYZE
SELECT bid, COUNT(*) AS cnt
 FROM Reserves
 GROUP BY bid
 ORDER BY cnt

Postgres v9.1

Faloutsos/Pavlo CMU - 15-415/615

5

CMU SCS

EXPLAIN ANALYZE

• Works on any type of query.

• Since ANALYZE actually executes a query,

if you use it with a query that modifies the

table, that modification will be made.

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Today‟s Class

• More on Indexes

• Explain

• Joins

• Mid-term Review (Christos)

Faloutsos/Pavlo CMU SCS 15-415/615 18

CMU SCS

19

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Catalog Manager

Query Plan Evaluator
Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

CMU SCS

sid bid day rname

6 103 2014-02-01 matlock

1 102 2014-02-02 macgyver

2 101 2014-02-02 a-team

1 101 2014-02-01 dallas

Sample Database

Faloutsos/Pavlo CMU SCS 15-415/615 20

SAILORS RESERVES
sid sname rating age

1 Christos 999 45.0

3 Obama 50 52.0

2 Tupac 32 26.0

6 Bieber 10 19.0

Sailors(sid: int, sname: varchar, rating: int, age: real)

Reserves(sid: int, bid: int, day: date, rname: varchar)

http://www.hoofersailing.org/

Faloutsos/Pavlo CMU - 15-415/615

6

CMU SCS

Sample Database

Faloutsos/Pavlo CMU SCS 15-415/615 21

SAILORS RESERVES

Each tuple is 50 bytes

80 tuples per page

500 pages total

N=500, pS=80

Each tuple is 40 bytes

100 tuples per page

1000 pages total

M=1000, pR=100

sid bid day rname

6 103 2014-02-01 matlock

1 102 2014-02-02 macgyver

2 101 2014-02-02 a-team

1 101 2014-02-01 dallas

sid sname rating age

1 Christos 999 45.0

3 Obama 50 52.0

2 Tupac 32 26.0

6 Bieber 10 19.0

CMU SCS

Joins

• R⨝S is very common and thus must be

carefully optimized.

• R×S followed by a selection is inefficient

because cross-product is large.

• There are many approaches to reduce join

cost, but no one works best for all cases.

• Remember, join is associative and

commutative.

Faloutsos/Pavlo CMU SCS 15-415/615 22

CMU SCS

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

Joins

• Join techniques we will cover:

– Nested Loop Joins

– Index Nested Loop Joins

– Sort-Merge Joins

– Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 24

Faloutsos/Pavlo CMU - 15-415/615

7

CMU SCS

Joins

• Assume:

– M pages in R, pR tuples per page, m tuples total

– N pages in S, pS tuples per page, n tuples total

– In our examples, R is Reserves and S is Sailors.

• We will consider more complex join

conditions later.

• Cost metric: # of I/Os

Faloutsos/Pavlo CMU SCS 15-415/615 25

We will ignore
output costs

CMU SCS

First Example

• Assume that we don‟t know anything about

the tables and we don‟t have any indexes.

Faloutsos/Pavlo CMU SCS 15-415/615 26

SELECT *
 FROM Reserves R, Sailors S
 WHERE R.sid = S.sid

CMU SCS

Simple Nested Loop Join

• Algorithm #0: Simple Nested Loop Join

Faloutsos/Pavlo CMU SCS 15-415/615 27

foreach tuple r of R
 foreach tuple s of S
 output, if they match

R(A,..)

S(A,)

CMU SCS

Simple Nested Loop Join

• Algorithm #0: Simple Nested Loop Join

Faloutsos/Pavlo CMU SCS 15-415/615 28

foreach tuple r of R
 foreach tuple s of S
 output, if they match

outer relation

inner relation
R(A,..)

S(A,)

Faloutsos/Pavlo CMU - 15-415/615

8

CMU SCS

Simple Nested Loop Join

• Algorithm #0: Why is it bad?

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: M + (pR ∙ M) ∙ N

Faloutsos/Pavlo CMU SCS 15-415/615 29

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Simple Nested Loop Join

• Actual number:

– M + (pR ∙ M) ∙ N = 1000 + 100 ∙ 1000 ∙ 500

 = 50,001,000 I/Os

– At 10ms/IO, Total time ≈ 5.7 days

• What if smaller relation (S) was outer?

– Slightly better…

• What assumptions are being made here?

– 1 buffer for each table (and 1 for output)

Faloutsos/Pavlo CMU SCS 15-415/615 30

CMU SCS

Simple Nested Loop Join

• Actual number:

– M + (pR ∙ M) ∙ N = 1000 + 100 ∙ 1000 ∙ 500

 = 50,001,000 I/Os

– At 10ms/IO, Total time ≈ 5.7 days

• What if smaller relation (S) was outer?

– Slightly better…

• What assumptions are being made here?

– 1 buffer for each table (and 1 for output)

Faloutsos/Pavlo CMU SCS 15-415/615 31

SSD ≈ 1.3 hours
at 0.1ms/IO

CMU SCS

Simple Nested Loop Join

• Actual number:

– M + (pR ∙ M) ∙ N = 1000 + 100 ∙ 1000 ∙ 5000

 = 50,001,000 I/Os

– At 10ms/IO, Total time ≈ 5.7 days

• What if smaller relation (S) was outer?

– Slightly better…

• What assumptions are being made here?

– 1 buffer for each table (and 1 for output)

Faloutsos/Pavlo CMU SCS 15-415/615 32

SSD ≈ 1.3 hours
at 0.1ms/IO

Faloutsos/Pavlo CMU - 15-415/615

9

CMU SCS

Simple Nested Loop Join

• Actual number:

– M + (pR ∙ M) ∙ N = 1000 + 100 ∙ 1000 ∙ 5000

 = 50,001,000 I/Os

– At 10ms/IO, Total time ≈ 5.7 days

• What if smaller relation (S) was outer?

– Slightly better…

• What assumptions are being made here?

– 1 buffer for each table (and 1 for output)

Faloutsos/Pavlo CMU SCS 15-415/615 33

SSD ≈ 1.3 hours
at 0.1ms/IO

CMU SCS

Block Nested Loop Join

• Algorithm #1: Block Nested Loop Join

Faloutsos/Pavlo CMU SCS 15-415/615 34

read block from R
 read block from S
 output, if tuples match

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Block Nested Loop Join

• Algorithm #1: Things are better.

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: M + (M∙N)

Faloutsos/Pavlo CMU SCS 15-415/615 35

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Block Nested Loop Join

• Algorithm #1: Optimizations

• Which one should be the outer relation?

– The smallest (in terms of # of pages)

Faloutsos/Pavlo CMU SCS 15-415/615 36

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

Faloutsos/Pavlo CMU - 15-415/615

10

CMU SCS

Block Nested Loop Join

• Actual number:

– M + (M∙N) = 1000 + 1000 ∙ 500 = 501,000 I/Os

– At 10ms/IO, Total time ≈ 1.4 hours

Faloutsos/Pavlo CMU SCS 15-415/615 37

CMU SCS

Block Nested Loop Join

• Actual number:

– M + (M∙N) = 1000 + 1000 ∙ 500 = 501,000 I/Os

– At 10ms/IO, Total time ≈ 1.4 hours

• What if we use the smaller one as the outer

relation?

Faloutsos/Pavlo CMU SCS 15-415/615 38

SSD ≈ 50 seconds
at 0.1ms/IO

CMU SCS

Block Nested Loop Join

• Actual number:

– N + (M∙N) = 500 + 1000 ∙ 500 = 500,500 I/Os

– At 10ms/IO, Total time ≈ 1.4 hours

• What if we have B buffers available?

– Give B-2 buffers to outer relation, 1 to inner

relation, 1 for output

Faloutsos/Pavlo CMU SCS 15-415/615 39

CMU SCS

Block Nested Loop Join

• Algorithm #1: Using multiple buffers.

Faloutsos/Pavlo CMU SCS 15-415/615 40

read B-2 blocks from R
 read block from S
 output, if tuples match

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

Faloutsos/Pavlo CMU - 15-415/615

11

CMU SCS

Block Nested Loop Join

• Algorithm #1: Using multiple buffers.

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: M+ (M/(B-2) ∙N)

Faloutsos/Pavlo CMU SCS 15-415/615 41

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Block Nested Loop Join

• Algorithm #1: Using multiple buffers.

• But if the outer relation fits in memory:

– Cost: M+N = 1000 + 500 = 1,500 I/Os

– At 10ms/IO, Total time ≈ 15 seconds

Faloutsos/Pavlo CMU SCS 15-415/615 42

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

SSD ≈ 0.15 seconds
at 0.1ms/IO

CMU SCS

Joins

• Join techniques we will cover:

– Nested Loop Joins

– Index Nested Loop Joins

– Sort-Merge Joins

– Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Index Nested Loop

• Why do basic nested loop joins suck?

– For each tuple in the outer table, we have to do

a sequential scan to check for a match in the

inner table.

• A better approach is to use an index to find

inner table matches.

– We could use an existing index, or even build

one on the fly.

Faloutsos/Pavlo CMU SCS 15-415/615 44

Faloutsos/Pavlo CMU - 15-415/615

12

CMU SCS

Index Nested Loop Join

• Algorithm #2: Index Nested Loop Join

Faloutsos/Pavlo CMU SCS 15-415/615 45

foreach tuple r of R
 foreach tuple s of S, where ri==sj
 output

Index Probe
R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Index Nested Loop

• Algorithm #2: Index Nested Loop Join

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: M + m ∙ C

Faloutsos/Pavlo CMU SCS 15-415/615 46

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

Look-up Cost

CMU SCS

Nested Loop Joins Guideline

• Pick the smallest table as the outer relation

– i.e., the one with the fewest pages

• Put as much of it in memory as possible

• Loop over the inner

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

Joins

• Join techniques we will cover:

– Nested Loop Joins

– Index Nested Loop Joins

– Sort-Merge Joins

– Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 48

Faloutsos/Pavlo CMU - 15-415/615

13

CMU SCS

Sort-Merge Join

• Sort Phase: First sort both tables on joining

attribute.

• Merge Phase: Then step through each one

in lock-step to find matches.

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU SCS

Sort-Merge Join

• This algorithm is useful if:

– One or both tables are already sorted on join

attribute(s)

– Output is required to be sorted on join attributes

• The “Merge” phase can require some back

tracking if duplicate values appear in join

column.

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

Sort-Merge Join Example

Faloutsos/Pavlo CMU SCS 15-415/615 51

SELECT *
 FROM Reserves R, Sailors S
 WHERE R.sid = S.sid

sid bid day rname

6 103 2014-02-01 matlock

1 102 2014-02-02 macgyver

2 101 2014-02-02 a-team

1 101 2014-02-01 dallas

sid sname rating age

1 Christos 999 45.0

3 Obama 50 52.0

2 Tupac 32 26.0

6 Bieber 10 19.0

Sort! Sort!

CMU SCS

Sort-Merge Join Example

Faloutsos/Pavlo CMU SCS 15-415/615 52

SELECT *
 FROM Reserves R, Sailors S
 WHERE R.sid = S.sid

sid bid day rname

1 102 2014-02-02 macgyver

1 101 2014-02-01 dallas

2 101 2014-02-02 a-team

6 103 2014-02-01 matlock

sid sname rating age

1 Christos 999 45.0

2 Tupac 32 26.0

3 Obama 50 52.0

6 Bieber 10 19.0

Merge! Merge!

✔

✔

✔

✔

Faloutsos/Pavlo CMU - 15-415/615

14

CMU SCS

Sort-Merge Join

• Algorithm #3: Sort-Merge Join

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: (2M ∙ logM/logB) + (2N ∙ logN/logB)

 + M + N

Faloutsos/Pavlo CMU SCS 15-415/615 53

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

CMU SCS

Sort-Merge Join

• Algorithm #3: Sort-Merge Join

• How many disk accesses („M‟ and „N‟ are

the number of blocks for „R‟ and „S‟)?

– Cost: (2M ∙ logM/logB) + (2N ∙ logN/logB)

 + M + N

Faloutsos/Pavlo CMU SCS 15-415/615 54

R(A,..)

S(A,) M pages,

m tuples N pages,

n tuples

Sort Cost Sort Cost

Merge Cost

CMU SCS

Sort-Merge Join Example

• With 100 buffer pages, both Reserves and

Sailors can be sorted in 2 passes:

– Cost: 7,500 I/Os

– At 10ms/IO, Total time ≈ 75 seconds

• Block Nested Loop:

– Cost: 2,500 to 15,000 I/Os

Faloutsos/Pavlo CMU SCS 15-415/615 55

CMU SCS

Sort-Merge Join Example

• With 100 buffer pages, both Reserves and

Sailors can be sorted in 2 passes:

– Cost: 7,500 I/Os

– At 10ms/IO, Total time ≈ 75 seconds

• Block Nested Loop:

– Cost: 2,500 to 15,000 I/Os

Faloutsos/Pavlo CMU SCS 15-415/615 56

SSD ≈ 0.75 seconds
at 0.1ms/IO

Faloutsos/Pavlo CMU - 15-415/615

15

CMU SCS

Sort-Merge Join

• Worst case for merging phase?

– When all of the tuples in both relations contain

the same value in the join attribute.

– Cost: (M ∙ N) + (sort cost)

• Don‟t worry kids! This is unlikely!

Faloutsos/Pavlo CMU SCS 15-415/615 57

CMU SCS

Sort-Merge Join Optimizations

• All the refinements from external sorting

• Plus overlapping of the merging of sorting

with the merging of joining.

Faloutsos/Pavlo CMU SCS 15-415/615 58

CMU SCS

Joins

• Join techniques we will cover:

– Nested Loop Joins

– Index Nested Loop Joins

– Sort-Merge Joins

– Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 59

CMU SCS

In-Memory Hash Join

Faloutsos/Pavlo CMU SCS 15-415/615 60

R(A, ...)
S(A,)

h1

• Algorithm #4: In-Memory Hash Join

build hash table H for R
foreach tuple s of S
 output, if h(sj)∈ H

This assumes H
fits in memory!

Hash Probe

h1

⋮

Hash Table

Faloutsos/Pavlo CMU - 15-415/615

16

CMU SCS

Grace Hash Join

• Hash join when tables don‟t fit in memory.

– Partition Phase: Hash both tables on the join

attribute into partitions.

– Probing Phase: Compares tuples in

corresponding partitions for each table.

• Named after the GRACE database machine.

Faloutsos/Pavlo CMU SCS 15-415/615 61

CMU SCS

Grace Hash Join

• Hash R into (0, 1, ..., „max‟) buckets

• Hash S into buckets (same hash function)

Faloutsos/Pavlo CMU SCS 15-415/615 62

R(A, ...)
S(A,)

⋮

h1

⋮

h1

CMU SCS

Grace Hash Join

• Join each pair of matching buckets:

– Build another hash table for HS(i), and probe it

with each tuple of HR(i)

Faloutsos/Pavlo CMU SCS 15-415/615 63

R(A, ...)
S(A,)

⋮

h1

⋮

h1

HR(i) HS(i)

0

1

2

max

CMU SCS

Grace Hash Join

• Choose the (page-wise) smallest - if it fits in

memory, do a nested loop join

– Build a hash table (with H2 != H)

– And then probe it for each tuple of the other

Faloutsos/Pavlo CMU SCS 15-415/615 64

Faloutsos/Pavlo CMU - 15-415/615

17

CMU SCS

Grace Hash Join

• What if HS(i) is too large to fit in memory?

– Recursive Partitioning!

– More details (overflows, hybrid hash joins)

available in textbook (Ch 14.4.3)

Faloutsos/Pavlo CMU SCS 15-415/615 65

CMU SCS

Grace Hash Join

• Cost of hash join?

– Assume that we have enough buffers.

– Cost: 3(M + N)

• Partitioning Phase: read+write both tables

– 2(M+N) I/Os

• Probing Phase: read both tables

– M+N I/Os

Faloutsos/Pavlo CMU SCS 15-415/615 66

CMU SCS

Grace Hash Join

• Actual number:

– 3(M + N) = 3 ∙ (1000 + 500) = 4,500 I/Os

– At 10ms/IO, Total time ≈ 45 seconds

Faloutsos/Pavlo CMU SCS 15-415/615 67

SSD ≈ 0.45 seconds
at 0.1ms/IO

CMU SCS

Sort-Merge Join vs. Hash Join

• Given a minimum amount of memory both

have a cost of 3(M+N) I/Os.

• When do we want to choose one over the

other?

Faloutsos/Pavlo CMU SCS 15-415/615 68

Faloutsos/Pavlo CMU - 15-415/615

18

CMU SCS

Sort-Merge Join vs. Hash Join

• Sort-Merge:

– Less sensitive to data skew.

– Result is sorted (may help upstream operators).

– Goes faster if one or both inputs already sorted.

• Hash:

– Superior if relation sizes differ greatly.

– Shown to be highly.

Faloutsos/Pavlo CMU SCS 15-415/615 69

CMU SCS

Sort-Merge Join vs. Hash Join

• Sort-Merge:

– Less sensitive to data skew.

– Result is sorted (may help upstream operators).

– Goes faster if one or both inputs already sorted.

• Hash:

– Superior if relation sizes differ greatly.

– Shown to be highly.

Faloutsos/Pavlo CMU SCS 15-415/615 70

CMU SCS

Sort-Merge Join vs. Hash Join

• Sort-Merge:

– Less sensitive to data skew.

– Result is sorted (may help upstream operators).

– Goes faster if one or both inputs already sorted.

• Hash:

– Superior if relation sizes differ greatly.

– Shown to be highly parallelizable.

Faloutsos/Pavlo CMU SCS 15-415/615 71

CMU SCS

Summary

• There are multiple ways to do selections if

you have different indexes.

• Joins are difficult to optimize.

– Index Nested Loop when selectivity is small.

– Sort-Merge/Hash when joining whole tables.

Faloutsos/Pavlo CMU SCS 15-415/615 72

