
Faloutsos/Pavlo CMU - 15-415/615

1

CMU SCS

Carnegie Mellon Univ.

Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo

Lecture#13: Query Evaluation

CMU SCS

Administrivia

• HW4 is due this Thursday.

• Mid-term on Tues March 3rd

– Will cover everything up to last week.

– Closed book, one sheet of notes (double-sided)

– Please email Christos + Andy if you need

special accommodations.

– More Info: http://cmudb.io/s15-midterm

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Extended Office Hours

• Christos:

– Wednesday Feb 25th 1:00pm-2:00pm

– Friday Feb 27th 1:00pm-2:00pm

• Andy:

– Wednesday Feb 25th 3:30pm-4:30pm

– Monday Mar 2nd 1:00pm-2:00pm

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

Last Class

• Sorting:

– External Merge Sort

• Projection:

– External Merge Sort

– Two-Phase Hashing

Faloutsos/Pavlo CMU SCS 15-415/615 4

These are for when
the data is larger
than the amount of
memory available.

http://cmudb.io/s15-midterm
http://cmudb.io/s15-midterm
http://cmudb.io/s15-midterm

Faloutsos/Pavlo CMU - 15-415/615

2

CMU SCS

CMU SCS 15-415/615 5

Today's Class

• Catalog (12.1)

• Intro to Operator Evaluation (12.2-3)

• Typical Query Optimizer (12.6)

• Projection/Aggregation: Sort vs. Hash

(14.3.2)

Faloutsos/Pavlo

CMU SCS

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Catalog Manager

Query Plan Evaluator
Schema Statistics

Select *

From Blah B

Where B.blah = blah
Queries

CMU SCS 15-415/615 6 Faloutsos/Pavlo

CMU SCS

Catalog: Schema

• What would you store?

– Info about tables, attributes, indices, users

• How?

– In tables!

Attribute_Cat (attr_name: string, rel_name:

string; type: string; position: integer)

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Catalog: Schema

• What would you store?

– Info about tables, attributes, indices, users

• How?

– In tables!

Attribute_Cat (attr_name: string, rel_name:

string; type: string; position: integer)

Faloutsos/Pavlo CMU SCS 15-415/615 8

Faloutsos/Pavlo CMU - 15-415/615

3

CMU SCS

Accessing Table Schema

• You can query the DBMS’s internal

INFORMATION_SCHEMA catalog to get

info about the database.

• ANSI standard set of read-only views that

provide info about all of the tables, views,

columns, and procedures in a database

• Every DBMS also have non-standard

shortcuts to do this.

Faloutsos/Pavlo CMU SCS 15-415/615 9

CMU SCS

Accessing Table Schema

• List all of the tables in the current database:

Faloutsos/Pavlo CMU SCS 15-415/615 10

SELECT * FROM INFORMATION_SCHEMA.TABLES
 WHERE table_catalog = '<db name>'

\d; Postgres

SHOW TABLES; MySQL

.tables; SQLite

CMU SCS

Accessing Table Schema

• List the column info for the student table:

Faloutsos/Pavlo CMU SCS 15-415/615 11

SELECT * FROM INFORMATION_SCHEMA.COLUMNS
 WHERE table_name = 'student'

\d student; Postgres

DESCRIBE student; MySQL

.schema student; SQLite

CMU SCS

Catalog: Statistics

• Why do we need them?

– To estimate cost of query plans

• What would you store?
– NTuples(R): # records for table R

– NPages(R): # pages for R

– NKeys(I): # distinct key values for index I

– INPages(I): # pages for index I

– IHeight(I): # levels for I

– ILow(I), IHigh(I): range of values for I

Faloutsos/Pavlo CMU SCS 15-415/615 12

Faloutsos/Pavlo CMU - 15-415/615

4

CMU SCS

Catalog: Statistics

• Why do we need them?

– To estimate cost of query plans

• What would you store?
– Tables: # tuples, # pages

– Indexes: # distinct values, # pages, min/max

Faloutsos/Pavlo CMU SCS 15-415/615 13

CMU SCS

CMU SCS 15-415/615 14

Today's Class

• Catalog (12.1)

• Intro to Operator Evaluation (12.2-3)

• Typical Query Optimizer (12.6)

• Projection/Aggregation: Sort vs. Hash

(14.3.2)

Faloutsos/Pavlo

CMU SCS

Query Plan Example

Faloutsos/Pavlo CMU SCS 15-415/615 15

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

pcname, amt(samt>1000 (customer⋈account))

Relational Algebra:

CMU SCS

Query Plan Example

Faloutsos/Pavlo CMU SCS 15-415/615 16

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

CUSTOMER ACCOUNT

s

⨝

p

acctno=acctno

amt>1000

cname, amt

Faloutsos/Pavlo CMU - 15-415/615

5

CMU SCS

Query Plan Example

Faloutsos/Pavlo CMU SCS 15-415/615 17

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

CUSTOMER ACCOUNT

s

⨝

p

acctno=acctno

amt>1000

cname, amt

File Scan

Nested Loop

“On-the-fly”

“On-the-fly”

File Scan

CMU SCS

Query Plan Example

Faloutsos/Pavlo CMU SCS 15-415/615 18

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

CUSTOMER ACCOUNT

s

⨝

p
The output of each

operator is the input
to the next operator.

Each operator iterates
over its input and

performs some task.

CMU SCS

Operator Evaluation

• Several algorithms are available for

different relational operators.

• Each has its own performance trade-offs.

• The goal of the query optimizer is to choose

the one that has the lowest “cost”.

Faloutsos/Pavlo CMU SCS 15-415/615 19

 Next Week: How the DBMS finds the best plan.

CMU SCS

Operator Execution Strategies

• Indexing

• Iteration (= seq. scanning)

• Partitioning (sorting and hashing)

Faloutsos/Pavlo CMU SCS 15-415/615 20

Faloutsos/Pavlo CMU - 15-415/615

6

CMU SCS

Operator Algorithms

• Selection:

• Projection:

• Join:

• Group By:

• Order By:

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU SCS

Operator Algorithms

• Selection: file scan; index scan

• Projection: hashing; sorting

• Join:

• Group By:

• Order By:

Faloutsos/Pavlo CMU SCS 15-415/615 22

CMU SCS

Operator Algorithms

• Selection: file scan; index scan

• Projection: hashing; sorting

• Join: many ways (loops, sort-merge, etc)

• Group By:

• Order By:

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

Operator Algorithms

• Selection: file scan; index scan

• Projection: hashing; sorting

• Join: many ways (loops, sort-merge, etc)

• Group By: hashing; sorting

• Order By: sorting

Faloutsos/Pavlo CMU SCS 15-415/615 24

Faloutsos/Pavlo CMU - 15-415/615

7

CMU SCS

Operator Algorithms

• Selection: file scan; index scan

• Projection: hashing; sorting

• Join: many ways (loops, sort-merge, etc)

• Group By: hashing; sorting

• Order By: sorting

Faloutsos/Pavlo CMU SCS 15-415/615 25

Today

Next Lecture

Today

Today

Next Lecture

CMU SCS

CMU SCS 15-415/615 26

Today's Class

• Catalog (12.1)

• Intro to Operator Evaluation (12.2-3)

• Typical Query Optimizer (12.6)

• Projection/Aggregation: Sort vs. Hash

(14.3.2)

Faloutsos/Pavlo

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse tree)

• … into “canonical form” (syntactic q-opt)

• Generate alternative plans.

• Estimate cost for each plan.

• Pick the best one.

Faloutsos/Pavlo CMU SCS 15-415/615 27

CMU SCS

Query Plan Example

Faloutsos/Pavlo CMU SCS 15-415/615 28

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

CUSTOMER ACCOUNT

s

⨝

p

acctno=acctno

amt>1000

cname, amt

Faloutsos/Pavlo CMU - 15-415/615

8

CMU SCS

Query Plan Example

Faloutsos/Pavlo CMU SCS 15-415/615 29

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

CUSTOMER ACCOUNT

s

⨝

p

acctno=acctno

amt>1000

cname, amt

CUSTOMER ACCOUNT

s

⨝

p

acctno=acctno

amt>1000

cname, amt

CUSTOMER ACCOUNT

s
⨝

p

acctno=acctno

amt>1000

cname, amt

p acctno, amt

CMU SCS

CMU SCS 15-415/615 30

Today's Class

• Catalog (12.1)

• Intro to Operator Evaluation (12.2,3)

• Typical Query Optimizer (12.6)

• Projection/Aggregation: Sort vs. Hash

(14.3.2)

Faloutsos/Pavlo

CMU SCS

Duplicate Elimination

• What does it do, in English?

• How to execute it?

Faloutsos/Pavlo CMU SCS 15-415/615 31

SELECT DISTINCT bname
 FROM account
 WHERE amt > 1000

pDISTINCT bname (samt>1000 (account))

Not technically correct because
RA doesn’t have “DISTINCT”

CMU SCS

Duplicate Elimination

Faloutsos/Pavlo CMU SCS 15-415/615 32

SELECT DISTINCT bname
 FROM account
 WHERE amt > 1000

ACCOUNT

s

p

amt>1000

DISTINCT bname

Two Choices:
• Sorting
• Hashing

Faloutsos/Pavlo CMU - 15-415/615

9

CMU SCS

Sorting Projection

Faloutsos/Pavlo CMU SCS 15-415/615 33

acctno bname amt

A-123 Redwood 1800

A-789 Downtown 2000

A-123 Perry 1500

A-456 Downtown 1300
ACCOUNT

s

p

amt>1000

DISTINCT bname

Remove
Columns

Sort

Eliminate
Dupes

acctno bname amt

A-123 Redwood 1800

A-789 Downtown 2000

A-123 Perry 1500

A-456 Downtown 1300

bname

Redwood

Downtown

Perry

Downtown

bname

Downtown

Downtown

Perry

Redwood

X

Filter

CMU SCS

Alternative to Sorting: Hashing!

• What if we don’t need the order of the

sorted data?

– Forming groups in GROUP BY

– Removing duplicates in DISTINCT

• Hashing does this!

– And may be cheaper than sorting! (why?)

– But what if table doesn’t fit in memory?

Faloutsos/Pavlo CMU SCS 15-415/615 34

CMU SCS

Hashing Projection

• Populate an ephemeral hash table as we

iterate over a table.

• For each record, check whether there is

already an entry in the hash table:

– DISTINCT: Discard duplicate.

– GROUP BY: Perform aggregate computation.

• Two phase approach.

Faloutsos/Pavlo CMU SCS 15-415/615 35

CMU SCS

Phase 1: Partition

• Use a hash function h1 to split tuples into

partitions on disk.

– We know that all matches live in the same

partition.

– Partitions are “spilled” to disk via output buffers.

• Assume that we have B buffers.

Faloutsos/Pavlo CMU SCS 15-415/615 36

Faloutsos/Pavlo CMU - 15-415/615

10

CMU SCS

Phase 1: Partition

Faloutsos/Pavlo CMU SCS 15-415/615 37

acctno bname amt

A-123 Redwood 1800

A-789 Downtown 2000

A-123 Perry 1500

A-456 Downtown 1300
ACCOUNT

s

p

amt>1000

DISTINCT bname

Hash

Redwood

⋮

Downtown
Downtown

Perry

Remove
Columns

acctno bname amt

A-123 Redwood 1800

A-789 Downtown 2000

A-123 Perry 1500

A-456 Downtown 1300

bname

Redwood

Downtown

Perry

Downtown Filter

h1

B-1 partitions

CMU SCS

Phase 2: ReHash

• For each partition on disk:

– Read it into memory and build an in-memory

hash table based on a hash function h2

– Then go through each bucket of this hash table

to bring together matching tuples

• This assumes that each partition fits in

memory.

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

Phase 2: ReHash

Faloutsos/Pavlo CMU SCS 15-415/615 39

ACCOUNT

s

p

amt>1000

DISTINCT bname

h2
Partitions

From
Phase 1

Redwood

⋮

Downtown
Downtown

Perry

key value

XXX Downtown

YYY Redwood

ZZZ Perry

Eliminate
Dupes

bname

Downtown

Perry

Redwood

Hash
Table

acctno bname amt

A-123 Redwood 1800

A-789 Downtown 2000

A-123 Perry 1500

A-456 Downtown 1300

h2

h2

CMU SCS

Analysis

• How big of a table can we hash using this

approach?

– B-1 “spill partitions” in Phase 1

– Each should be no more than B blocks big

Faloutsos/Pavlo CMU SCS 15-415/615 40

Faloutsos/Pavlo CMU - 15-415/615

11

CMU SCS

Analysis

• How big of a table can we hash using this

approach?

– B-1 “spill partitions” in Phase 1

– Each should be no more than B blocks big

– Answer: B∙(B-1).

• A table of N blocks needs about sqrt(N) buffers

– What assumption do we make?

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

Analysis

• How big of a table can we hash using this

approach?

– B-1 “spill partitions” in Phase 1

– Each should be no more than B blocks big

– Answer: B∙(B-1).

• A table of N blocks needs about sqrt(N) buffers

– Assumes hash distributes records evenly!

• Use a “fudge factor” f >1 for that: we need

• B ~ sqrt(f ∙N)

Faloutsos/Pavlo CMU SCS 15-415/615 42

CMU SCS

Analysis

• Have a bigger table? Recursive

partitioning!

– In the ReHash phase, if a partition i is bigger

than B, then recurse.

– Pretend that i is a table we need to hash, run the

Partitioning phase on i, and then the ReHash

phase on each of its (sub)partitions

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Recursive Partitioning

Faloutsos/Pavlo CMU SCS 15-415/615 44

Hash

h1 h1’

⋮

Hash the overflowing
bucket again

h2

h2

h2

h2

h2

Faloutsos/Pavlo CMU - 15-415/615

12

CMU SCS

Hashing vs. Sorting

• Which one needs more buffers?

Faloutsos/Pavlo CMU SCS 15-415/615 45

CMU SCS

Hashing vs. Sorting

• Recall: We can hash a table of size N

blocks in sqrt(N) space

• How big of a table can we sort in 2 passes?

– Get N/B sorted runs after Pass 0

– Can merge all runs in Pass 1 if N/B ≤ B-1

• Thus, we (roughly) require: N ≤ B2

• We can sort a table of size N blocks in about space

sqrt(N)

– Same as hashing!

Faloutsos/Pavlo CMU SCS 15-415/615 46

CMU SCS

Hashing vs. Sorting

• Choice of sorting vs. hashing is subtle and

depends on optimizations done in each case

• Already discussed optimizations for sorting:

– Heapsort in Pass 0 for longer runs

– Chunk I/O into large blocks to amortize

seek+RD costs

– Double-buffering to overlap CPU and I/O

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

Hashing vs. Sorting

• Choice of sorting vs. hashing is subtle and

depends on optimizations done in each case

• Another optimization when using sorting

for aggregation:

– “Early aggregation” of records in sorted runs

• Let’s look at some optimizations for

hashing next…

Faloutsos/Pavlo CMU SCS 15-415/615 48

Faloutsos/Pavlo CMU - 15-415/615

13

CMU SCS

Hashing: We Can Do Better!

• Combine the summarization into the

hashing process - How?

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU SCS

Hashing: We Can Do Better!

• During the ReHash phase, store pairs of the

form <GroupKey, RunningVal>

• When we want to insert a new tuple into the

hash table:

– If we find a matching GroupKey, just update

the RunningVal appropriately

– Else insert a new <GroupKey, RunningVal>

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

Hashing Aggregation

Faloutsos/Pavlo CMU SCS 15-415/615 51

SELECT bname, SUM(amt)
 FROM account
 GROUP BY bname

h2
Partitions

From
Phase 1

Redwood

⋮

Downtown
Downtown

Perry

key value

XXX <Redwood, 1200>

YYY <Downtown,1000>

ZZZ <Perry,1500>

Final
Result

bname SUM(amt)

Redwood 4355

Downtown 6895

Perry 7901

Hash
Table

Running Totals

h2

h2

CMU SCS

Hashing Aggregation

• What’s the benefit?

• How many entries will we have to handle?

– Number of distinct values of GroupKeys

columns

– Not the number of tuples!!

– Also probably “narrower” than the tuples

Faloutsos/Pavlo CMU SCS 15-415/615 52

Faloutsos/Pavlo CMU - 15-415/615

14

CMU SCS

So, hashing is better…right?

• Any caveats?

Faloutsos/Pavlo CMU SCS 15-415/615 53

CMU SCS

So, hashing is better…right?

• Any caveats?

• A1: Sorting is better on non-uniform data

• A2: ... and when sorted output is required

later.

• Hashing vs. sorting:

– Commercial systems use either or both

Faloutsos/Pavlo CMU SCS 15-415/615 54

CMU SCS

Summary

• Query processing architecture:

– Query optimizer translates SQL to a query plan

– Query executor “interprets” the plan

• Hashing is a useful alternative to sorting for

duplicate elimination / group-by

– Both are valuable techniques for a DBMS

Faloutsos/Pavlo CMU SCS 15-415/615 55

CMU SCS

Next Class

• How to actually use indexes.

• Join algorithms.

• More query optimization.

Faloutsos/Pavlo CMU SCS 15-415/615 56

