
Faloutsos/Pavlo CMU - 15-415/615

1

CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo
Lecture#12: External Sorting (R&G, Ch13)

CMU SCS

CMU SCS 15-415/615 2

Last Class

•  Static Hashing
•  Extendible Hashing
•  Linear Hashing
•  Hashing vs. B-trees

Faloutsos/Pavlo

CMU SCS

CMU SCS 15-415/615 3

Today's Class

•  Sorting Overview
•  Two-way Merge Sort
•  External Merge Sort
•  Optimizations
•  B+trees for sorting

Faloutsos/Pavlo

CMU SCS

Why do we need to sort?

Faloutsos/Pavlo CMU SCS 15-415/615 4

Faloutsos/Pavlo CMU - 15-415/615

2

CMU SCS

Why do we need to sort?

•  SELECT...ORDER BY
–  e.g., find students in increasing gpa order

•  Bulk loading B+ tree index.
•  Duplicate elimination (DISTINCT)
•  SELECT...GROUP BY
•  Sort-merge join algorithm involves

sorting.
Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

Why do we need to sort?

•  What do we do if the data that we want to
sort is larger than the amount of memory
that is available to the DBMS?

•  What if multiple queries are running at the
same time and they all want to sort data?

•  Why not just use virtual memory?

Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

Overview

•  Files are broken up into N pages.
•  The DBMS has a finite number of B fixed-

size buffers.

•  Let’s start with a simple example…

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Two-way External Merge Sort

•  Pass 0: Read a page, sort it, write it.
–  only one buffer page is used

•  Pass 1,2,3,…: requires 3 buffer pages
– merge pairs of runs into runs twice as long
–  three buffer pages used.

Faloutsos/Pavlo 8
Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Faloutsos/Pavlo CMU - 15-415/615

3

CMU SCS

Two-way External Merge Sort

•  Each pass we read +
write each page in file.

Faloutsos/Pavlo 9

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

CMU SCS

Two-way External Merge Sort

•  Each pass we read +
write each page in file.

Faloutsos/Pavlo 10

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

CMU SCS

Two-way External Merge Sort

•  Each pass we read +
write each page in file.

Faloutsos/Pavlo 11

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

CMU SCS

Two-way External Merge Sort

•  Each pass we read +
write each page in file.

Faloutsos/Pavlo 12

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

Faloutsos/Pavlo CMU - 15-415/615

4

CMU SCS

Two-way External Merge Sort

•  Each pass we read +
write each page in file.

•  # of passes

•  So total I/O cost is:

•  Divide and conquer:
sort subfiles and merge

Faloutsos/Pavlo 13

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,6 2,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

CMU SCS

Two-way External Merge Sort

•  This algorithm only requires three buffer
pages.

•  Even if we have more buffer space
available, this algorithm does not utilize it
effectively.

•  Let’s look at the general algorithm…

Faloutsos/Pavlo 15-415/615 14

CMU SCS

General External Merge Sort

•  B>3 buffer pages.
•  How to sort a file with N pages?

Faloutsos/Pavlo 15-415/615 15
B Main memory buffers

Disk Disk

.

CMU SCS

General External Merge Sort

Faloutsos/Pavlo 15-415/615 16
B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2

.

•  Pass 0: Use B buffer pages. Produce
sorted runs of B pages each.

•  Pass 1,2,3,…: Merge B-1 runs.

Faloutsos/Pavlo CMU - 15-415/615

5

CMU SCS

Sorting

•  Create sorted runs of size B (how many?)
•  Merge them (how?)

Faloutsos/Pavlo 15-415/615 17

B

... ...

CMU SCS

Sorting

•  Create sorted runs of size B
•  Merge first B-1 runs into a sorted run of
 (B-1)·B, ...

Faloutsos/Pavlo 15-415/615 18

B

... ...
…..

CMU SCS

Sorting

•  How many passes we need to do?
 = i, where B·(B-1)^i > N
•  How many reads/writes per pass? N+N

Faloutsos/Pavlo 15-415/615 19

B

... ...
…..

CMU SCS

Cost of External Merge Sort

•  Number of passes:
•  Cost = 2N·(# of passes)

Faloutsos/Pavlo 15-415/615 20

Faloutsos/Pavlo CMU - 15-415/615

6

CMU SCS

Example

•  Sort 108 page file with 5 buffer pages:
–  Pass 0: = 22 sorted runs of 5 pages

each (last run is only 3 pages)
–  Pass 1: = 6 sorted runs of 20 pages

each (last run is only 8 pages)
–  Pass 2: 2 sorted runs, 80 pages and 28 pages
–  Pass 3: Sorted file of 108 pages

Faloutsos/Pavlo 15-415/615 21

Formula check: ┌log4 22┐= 3 … + 1  4 passes ✔

CMU SCS

of Passes of External Sort

Faloutsos/Pavlo 15-415/615 22

Cost = 2N·(# of passes)

CMU SCS

CMU SCS 15-415/615 23

Today's Class

•  Sorting Overview
•  Two-way Merge Sort
•  External Merge Sort
•  Optimizations
•  B+trees for sorting

Faloutsos/Pavlo

CMU SCS

Optimizations

•  Which internal sort algorithm should we use
for Pass 0?

•  How do we prevent the DBMS from
blocking when it needs input?

Faloutsos/Pavlo CMU SCS 15-415/615 24

Faloutsos/Pavlo CMU - 15-415/615

7

CMU SCS

Internal Sort Algorithm

•  Quicksort is a fast way to sort in memory.
•  But we get B buffers, and produce one run

of length B each time.
•  Can we produce longer runs than that?
•  Longer Runs = Fewer Passes

Faloutsos/Pavlo 15-415/615 25

DETAILS
CMU SCS

Heapsort

•  Alternative sorting algorithm (a.k.a.
“replacement sort”) for Pass 0.

•  Produces runs of length ~ 2·B
•  Clever, but not implemented, for subtle

reasons: tricky memory management on
variable length records

Faloutsos/Pavlo 15-415/615 26

DETAILS

CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 27

10

14

17

11

15 18 16

pick smallest, write to output buffer:

DETAILS
CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 28

...

14

17

11

15 18 16

10

pick smallest, write to output buffer:

DETAILS

Faloutsos/Pavlo CMU - 15-415/615

8

CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 29

22

14

17

11

15 18 16

get next key; put at top and ‘sink’ it

DETAILS
CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 30

11

14

17

22

15 18 16

get next key; put at top and ‘sink’ it

DETAILS

CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 31

11

14

17

16

15 18 22

get next key; put at top and ‘sink’ it

DETAILS
CMU SCS

Reminder: Heapsort

Faloutsos/Pavlo 15-415/615 32

11

14

17

16

15 18 22

When done, pick top (= smallest)
and output it, if ‘legal’ (ie., >=10

in our example)

This way, we can keep on reading
new key values (beyond the B

ones of quicksort)

DETAILS

Faloutsos/Pavlo CMU - 15-415/615

9

CMU SCS

Blocked I/O & Double-buffering

•  So far, we assumed random disk access.
•  The cost changes if we consider that runs

are written (and read) sequentially.
•  What could we do to exploit it?

Faloutsos/Pavlo 15-415/615 33

CMU SCS

Blocked I/O & Double-buffering

•  So far, we assumed random disk access.
•  The cost changes if we consider that runs

are written (and read) sequentially.
•  What could we do to exploit it?

– Blocked I/O: exchange a few r.d.a for several
sequential ones using bigger pages.

– Double-buffering: mask I/O delays with
prefetching.

Faloutsos/Pavlo 15-415/615 34

CMU SCS

Blocked I/O

•  Normally, B buffers of size (say) 4K

Faloutsos/Pavlo 15-415/615 35
6 Main memory buffers

INPUT 1

INPUT 5

OUTPUT

Disk Disk

INPUT 2

.

CMU SCS

Blocked I/O

•  Normally, B buffers of size (say) 4K
•  INSTEAD: B/b buffers, of size ‘b’

kilobytes

Faloutsos/Pavlo 15-415/615 36
6 Main memory buffers

INPUT 1

INPUT 2

OUTPUT

Disk Disk

.

Faloutsos/Pavlo CMU - 15-415/615

10

CMU SCS

Blocked I/O

•  Normally, B buffers of size (say) 4K
•  INSTEAD: B/b buffers, of size ‘b’

kilobytes
•  Advantages?

•  Disadvantages?

Faloutsos/Pavlo 15-415/615 37

CMU SCS

Blocked I/O

•  Normally, B buffers of size (say) 4K
•  INSTEAD: B/b buffers, of size ‘b’

kilobytes
•  Advantages?

•  Disadvantages?

Faloutsos/Pavlo 15-415/615 38

Fewer random disk accesses because
some of them are sequential.

CMU SCS

Blocked I/O

•  Normally, B buffers of size (say) 4K
•  INSTEAD: B/b buffers, of size ‘b’

kilobytes
•  Advantages?

•  Disadvantages?

Faloutsos/Pavlo 15-415/615 39

Fewer random disk accesses because
some of them are sequential.

Smaller fanout may cause more passes.

CMU SCS

Blocked I/O & Double-buffering

•  So far, we assumed random disk access
•  Cost changes, if we consider that runs are

written (and read) sequentially
•  What could we do to exploit it?

– Blocked I/O: exchange a few r.d.a for several
sequential ones using bigger pages.

– Double-buffering: mask I/O delays with
prefetching.

Faloutsos/Pavlo 15-415/615 40

Faloutsos/Pavlo CMU - 15-415/615

11

CMU SCS

Double-buffering

•  Normally, when, say ‘INPUT1’ is
exhausted
– We issue a “read” request and then we wait …

Faloutsos/Pavlo 15-415/615 41
B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

Disk Disk

INPUT 2

.

CMU SCS

Double-buffering

•  We prefetch INPUT1’ into “shadow block”
– When INPUT1 is exhausted, we issue a “read”,
– BUT we proceed with INPUT1’

Faloutsos/Pavlo 15-415/615 42
B Main memory buffers

OUTPUT

Disk Disk

.

INPUT 1
INPUT 1’

INPUT 2
INPUT 2’

INPUT B-1
INPUT B-1’

CMU SCS

Double-buffering

•  This potentially requires more passes.
•  But in practice, most files still sorted in 2-3

passes.

Faloutsos/Pavlo 15-415/615 43
B Main memory buffers

OUTPUT

Disk Disk

.

INPUT 1
INPUT 1’

INPUT 2
INPUT 2’

INPUT B-1
INPUT B-1’

CMU SCS

CMU SCS 15-415/615 44

Today's Class

•  Sorting Overview
•  Two-way Merge Sort
•  External Merge Sort
•  Optimizations
•  B+trees for sorting

Faloutsos/Pavlo

Faloutsos/Pavlo CMU - 15-415/615

12

CMU SCS

Using B+ Trees for Sorting

•  Scenario: Table to be sorted has B+ tree
index on sorting column(s).

•  Idea: Can retrieve records in order by
traversing leaf pages.

•  Is this a good idea?
•  Cases to consider:

–  B+ tree is clustered
–  B+ tree is not clustered

Faloutsos/Pavlo 15-415/615 45

Good Idea!
Could be Bad!

CMU SCS

Clustered B+ Tree for Sorting

•  Traverse to the left-
most leaf, then
retrieve all leaf
pages.

Faloutsos/Pavlo 15-415/615 46

 Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

CMU SCS

Unclustered B+ Tree for Sorting

•  Chase each pointer
to the page that
contains the data.

Faloutsos/Pavlo 15-415/615 47

In general, one I/O per data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

CMU SCS
External Sorting vs.
Unclustered Index

Faloutsos/Pavlo 15-415/615 48

 N: # pages
 p: # of records per page

 B=1,000 and block size=32 for sorting
 p=100 is the more realistic value.

Faloutsos/Pavlo CMU - 15-415/615

13

CMU SCS

Sorting World Record

•  Current Champions 2014 (tie):
– TritonSort (UCSD)

•  100 TB in 1,378 seconds (4.3 TB/min)
186 Amazon EC2 i2.8xlarge nodes

– Apache Spark
•  100 TB in 1,406 seconds (4.27 TB/min)

207 Amazon EC2 i2.8xlarge nodes

•  More Info:
–  http://sortbenchmark.org

Faloutsos/Pavlo CMU SCS 15-415/615 49

Jim Gray

CMU SCS

Summary

•  External sorting is important.
•  External merge sort minimizes disk I/O:

–  Pass 0: Produces sorted runs of size B (#
buffer pages).

–  Later Passes: merge runs.

•  Clustered B+ tree is good for sorting;
unclustered tree is usually very bad.

Faloutsos/Pavlo 15-415/615 50

