Carnegie Mellon Univ.
School of Computer Science
15-415/615 - DB Applications
C. Faloutsos \& A. Pavlo
Lecture \#4: Relational Algebra

Overview

- history
- concepts
- Formal query languages
- relational algebra
- rel. tuple calculus
- rel. domain calculus

- before: records, pointers, sets etc
- introduced by E.F. Codd in 1970
- revolutionary!
- first systems: 1977-8 (System R; Ingres)
- Turing award in 1981

Concepts - reminder

- Database: a set of relations (= tables)
- rows: tuples
- columns: attributes (or keys)
- superkey, candidate key, primary key

Example: cont'd

- Di: the domain of the i-th attribute (eg., char(10)

Formal query languages

- How do we collect information?
- Eg., find ssn's of people in 415
- (recall: everything is a set!)
- One solution: Rel. algebra, ie., set operators
- Q1: Which ones??
- Q2: what is a minimal set of operators?

- Anuscs

Relational operators

-
-
- .
- set union U
- set difference '_'

Other operators?

- Notice: selection (and rest of operators) expect tables, and produce tables ($->$ can be cascaded!!)
- For selection, in general:

$$
\sigma_{\text {condition }} \quad(R E L A T I O N)
$$

Selection - examples		
- Find all 'Smiths' on 'Forbes Ave'		
$\sigma_{\text {name='Smith' } \wedge ~ a d d r e s s=' F o r b e s ~ a v e ' ~}(S T U D E N T)$		
'condition' can be any boolean combination of ' $=$ ‘, '>’, ‘>=‘, ...		
Faloutsos - Pavlo	CMU SCS 15-415/15	\#21

$3^{3}{ }^{\text {cowsss }}$			
Relational operators			
- selection	$\sigma_{\text {condition }}$		
- set union	R U S		
- set difference	R-S		
Fiouoses. Pavo	cwusccis 1.451515		42

Relational operators

Cascading: 'find ssn of students on 'forbes ave'

$\pi_{s s n}\left(\sigma_{\text {address='f orbesave' }}(S T U D E N T)\right)$		
STUDENT		
Ssn	Name	Address
123	smith	main str
234	jones	forbes ave

Relational operators

Are we done yet?
Q: Give a query we can not answer yet!

Relational operators

A: any query across two or more tables, eg., 'find names of students in 15-415'
Q: what extra operator do we need??
A: surprisingly, cartesian product is enough!

STUDENT		
Ssn		Name
	123	smith
	Address	
234	jones	forbes ave

Faloutsos - Pavlo
CMU SCS 15-415/615

$5^{\text {cmuscs }}$					
so what?					
- Eg., how do we find names of students taking 415?					
STUDENT		SSN	c-id	grade	
Ssn Name	Address	123	15-415	A	
123 smith	main str		15-413	B	
234 jones	forbes ave				
Faloutsos - Pavlo	cmu scs	5/115			*30

Overview - rel. algebra

- fundamental operators
- derived operators
- joins etc
- rename
- division
- examples

Faloutsos - Pavlo

Division

- Observations: ~reverse of cartesian product
- It can be derived from the 5 fundamental operators (!!)
- How?

CMUSCS		
Division SHIPMENT		
- Answer:	s\# $\mathbf{s 1}$ $\frac{\mathrm{p} \#}{\text { p } 1}$	BAD_s
	s2 p1 S1	$=\frac{\mathrm{st}}{\mathbf{s i n}}$
	$\begin{array}{ll}\text { s1 } & \text { p1 } \\ \mathbf{s 1} & \text { p2 } \\ \mathbf{s 3} & \text { p1 }\end{array}$	
	s5 p3	
$r \div s=\pi_{(R-S)}(r)-\pi_{(R-S)}\left[\left(\pi_{(R-S)}(r) \times s\right)-r\right]$		
all possible		
suspicious shipments		
Faloutsos - Pavlo	CMU SCS 15-415/615	\#54

Sample schema find names of students that take $15-415$						
STUDENT				CLASS		
Ssn	Name	Add	dress	c-id	c-name	units
123	smith	main	n str	15-413	s.e.	2
234	jones	forb	es ave	15-412	O.s.	2
		TAKES				
		SSN	c-id	grade		
		123	15-413	A		
		234	15-413	B		
Faloutsos - Pavlo		CMU SCS 15-415/615				\#58

$3^{\text {a }}$ cuscs		
Examples		
- find course names of 'smith'		
$\pi_{c-\text { name }}\left[\sigma_{\text {name }} \operatorname{smmih}(\right.$		
$\xrightarrow{\text { STUDENT® } \triangle \text { TAKES } \triangle C L A S S ~}$		
Fiomosos. Pavo		* 2

Examples

- find ssn of 'overworked' students, ie., that take 412, 413, 415 -Correct answer:

$$
\begin{aligned}
& \pi_{s s n}\left[\sigma_{c-\text { name }=412}(T A K E S)\right] \cap \\
& \pi_{s s n}\left[\sigma_{\text {c.name-413 }}(T A K E S)\right] \cap \\
& \pi_{\text {ssn }}\left[\sigma_{c \text { c.name-415 }}(T A K E S)\right]
\end{aligned}
$$

Examples

- find ssn of students that work at least as hard as $\operatorname{ssn}=123$, ie., they take all the courses of ssn=123, and maybe more

${ }^{3}$ cuscs
 Examples

- find ssn of students that work at least as hard as $\mathrm{ssn}=123$ (ie., they take all the courses of $\mathrm{ssn}=123$, and maybe more
$\left[\pi_{s s n, c-i d}(T A K E S)\right] \div \pi_{c-i d}\left[\sigma_{s s n=123}(T A K E S)\right]$
Conclusions
- Relational model: only tables ('relations')

- relational algebra: powerful, minimal: 5
operators can handle almost any query!
Faloutsos - Pavlо
сми sсs 15-415/615

