
Carnegie Mellon University
Department of Computer Science
15-415/615 - Database Applications

C. Faloutsos & A. Pavlo, Spring 2015
Prepared by Vinay Bhat, Hong Bin and Jiayu Liu

DUE DATES: Ph1: 3/31, Ph2: 4/14, both at 1:30pm

Homework 7

IMPORTANT - what to hand in: For each of the two phases, please deliver all the
elements below (penalties for omissions).

• Phase 1: Due at 3/31, 1:30pm:
– hard copy: All your documentation for Phase 1.
– Blackboard submission: a file [andrew id hw7 phase1].pdf with your documen-

tation.
• Phase 2: Due at 4/14, 1:30pm

– Website: A working web site - include its URL in both hard and e-copies below.
– hard copy: the code you wrote for Phase 2.
– Blackboard submission: a zip file named[andrew id hw7 phase2].zip, with all

the necessary files for us to re-create your web site.

Important for Phase 2: The zip-file http://www.cs.cmu.edu/~christos/courses/dbms.
S15/hws/HW7/hw7.zip. contains everything you need for Phase 2.

Reminders:
• Plagiarism: Homework may be discussed with other students, but all homework is to

be completed individually.
• Late Homeworks: The usual rules: (a) hard copy to Mrs. Marilyn Walgora, and

(b) email to all TAs, with the subject line 15-415 Homework Submission (HW 7)

Phase[phase#], and the count of slip-days used (and remaining).

For your information:
• Graded out of 100 points;
• 2 questions total
• 5-10 hours for phase 1; 10-20 hours for phase 2.

1

http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW7/hw7.zip

15-415/615 Homework 7, Page 2 of 10 Ph1: 3/31; Ph2: 4/14, 1:30pm

Question Points Score

Deliverables - ph1 35

Deliverables - ph2 65

Total: 100

Homework 7 continues. . .

15-415/615 Homework 7, Page 3 of 10 Ph1: 3/31; Ph2: 4/14, 1:30pm

1 Introduction

The goal is to design and implement CMUPostly, a very simple application that lets you
make a post, like other posts and see some statistics. Your work is divided into two phases, as
we discuss in the lecture foils, following the http://www.cs.cmu.edu/~christos/courses/

dbms.S15/slides/CMU_ONLY/Roussopoulos-Yeh.pdf The first phase consists of the require-
ment analysis, system analysis, conceptual modeling and task emulation. The second phase
consists of implementation and testing: Using the API we provide you in the hw7.zip file
above, you will have to implement your database design, as well as the functionality that
the API supports, and deploy your solution on a webserver.

2 Requirements

2.1 Data requirements

• User: For each user, the system needs to track the unique username, (between 2 and
50 characters), the password, the posts (see below) he/she makes and likes.

• Posts: The system needs to store the body of the post, the username of the author,
the timestamp it was created and users who like a post.

2.2 Functionality requirements

In CMUPostly we have users who make posts, like posts made by other users, read posts,
etc, as described below. You have to implement the following Tasks:

T.1 Create user account (Register): We need the user-name of the user and the pass-
word. Prompt for a new user-name, if the proposed one is taken.

T.2 Reset database: Keep the tables, but delete all their records.

T.3 Login: Obvious - your system would ask for a user-name and password, and authen-
ticate the user or deny further access.

T.4 Timeline: After log-in, the main page should display the timeline. That is, your
system should show all the posts of all users in chronological order (newest first).

T.5 List hottest posts: User shoud be able to see the hottest posts over the last day/week/-
month (based on post’s timestamp). Hotness of a post is based on the number of likes.

T.6 Add Post: Once authenticated, a user should be able to add a post.

T.7 Search for a user: Given query sub-string (say mic) print all the user-names that
contain this sub-string (e.g., michael, mickey, karmic)

T.8 Like a post: Your system should allow a user to like another post made by a different
user, but not himself. One should be allowed to like a given post only once.

Homework 7 continues. . .

http://www.cs.cmu.edu/~christos/courses/dbms.S15/slides/CMU_ONLY/Roussopoulos-Yeh.pdf
http://www.cs.cmu.edu/~christos/courses/dbms.S15/slides/CMU_ONLY/Roussopoulos-Yeh.pdf

15-415/615 Homework 7, Page 4 of 10 Ph1: 3/31; Ph2: 4/14, 1:30pm

T.9 Delete a post: A user should be allowed to delete a post, provided he is the owner
of the post.

T.10 Recommend posts based on likes: For a given user ’U’, your system should recom-
mend posts to read. In short, we want to recommend the posts that are liked by other
users whose tastes match the given user ’U’. You should not include the posts that the
user has already liked. Recommended posts should be sorted based on the ’Similarity
Score’ i.e the posts with the highest ’common likes’ should be displayed first.

T.11 List all post for a given user: For a given user ’U’, list posts made by that user in
descending order of the post timestamp.

T.12 Search for posts: For a input string, search for the posts which contain this string.

T.13 User statistics: For a given user-name ’U’, display the following counts, or print a
warning if ’U’ does not exist.

(a) The number of posts made by that user
(b) The number of likes made by that user

T.14 Global statistics The system should be able to list heavy users, and specifically:

(a) Most popular: List of K posts with the most likes
(b) Most active: List of K users with the most posts

In all the above cases, treat K as a parameter. In case of a tie in K-th place, report
only K users, favoring the alphabetically first. I.e., if K=1, and ’bob’ and ’alice’ tie in
first place, report only ’alice’.

Homework 7 continues. . .

15-415/615 Homework 7, Page 5 of 10 Ph1: 3/31; Ph2: 4/14, 1:30pm

Phase 1 - Deliverables - ph1 . [35pts]
No need to separate your answers

We follow the design methodology of Roussopoulos and Yeh, summarized in the lecture
foils: http://www.cs.cmu.edu/~christos/courses/dbms.S15/slides/19methodology.
pdf. Thus, we have the following deliverables:

• Phase 1: Environment and Requirement Analysis, System Analysis and Specifica-
tion, Conceptual Modeling, and Task Emulation.

• Phase 2: Implementation and Testing.

Specifically, for Phase 1, the point distribution is as follows:

(a) [2 points] The top-level information flow diagram, along with the system bound-
ary.

(b) [1 point] The list of documents.

(c) [2 points] The document forms, including the assumptions and design decisions
you made.

(d) [3 points] The ER diagram. Make sure you specify the cardinalities of the rela-
tionships, as in HW1.

(e) [2 points] The relational schema.

(f) [10 points] SQL DDL statements that create the above schema - make sure you
include all constraints (primary key, foreign key, etc)

(g) [15 points] SQL DML statements for tasks T.1-T.14.

Homework 7 continues. . .

http://www.cs.cmu.edu/~christos/courses/dbms.S15/slides/19methodology.pdf
http://www.cs.cmu.edu/~christos/courses/dbms.S15/slides/19methodology.pdf

15-415/615 Homework 7, Page 6 of 10 Ph1: 3/31; Ph2: 4/14, 1:30pm

Phase 2 - Deliverables - ph2 . [65pts]
No need to separate your answers

The deliverables and point distribution of Phase 2 are as follows:

(a) [0 points] Download http://www.cs.cmu.edu/~christos/courses/dbms.S15/

hws/HW7/hw7.zip.

(b) [0 points] List of changes, if any, to your Phase 1 schema.

(c) [5 points] Listing of your code, below.

(d) [5 points] Listing of your testing efforts - for each task, please write down which
error cases you tested for (ie., non-existing user, illegal timestamp, etc)

(e) [50 points] The actual implementation: In hw7.zip above, we are providing you
with a basic implementation of the web application, which includes calls to the
database that you have designed but does not implement the required functionality.
Your job will be to connect the provided code with the database that you have
designed, in Phase 1 so that you have a working website that performs Tasks T.1-
T.14.

Table 1 shows the breakdown of the points. For each tasks, half of the assigned
points go to the basic implementation (i.e. having a working implementation of the
task) and the second half goes to testing and error checking.

Task Points
T.1 Account creation 3
T.2 Reset database 4
T.3 Login 3
T.4 List newest posts 4
T.5 List hottest posts 3
T.6 Add posts 3
T.7 Search for user 3
T.8 Like a post 3
T.9 Delete a post 3
T.10 Recommend posts 8
T.11 List all posts for a user 3
T.12 Search posts containing a string 1
T.13 User statistics 4
T.14 Global statistics 5

Table 1: Point breakdown

(f) [5 points] SQL injection: In short, make sure you strip-off all the “escape” char-
acters from your SQL strings. The reason is that, apart from the above func-
tions, you want to prevent unauthorized access to your system. More specifically,
you want to protect your SQL queries from an attack called SQL injection (see

Question 2 continues. . .

http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW7/hw7.zip
http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW7/hw7.zip

15-415/615 Homework 7, Page 7 of 10 Ph1: 3/31; Ph2: 4/14, 1:30pm

http://en.wikipedia.org/wiki/SQL_injection). For instance, code oblivious
to SQL injection, may allow an intruder to log-in without a password. Thus, your
code should sanitize the arguments to the SQL queries from all escape characters.
HINT: check the PHP function pg escape string().

Question 2 continues. . .

http://en.wikipedia.org/wiki/SQL_injection

15-415/615 Homework 7, Page 8 of 10 Ph1: 3/31; Ph2: 4/14, 1:30pm

3 Setup and Hints for Phase 2

3.1 VERY IMPORTANT: Set up

As in the previous homeworks, you will use Postgres; the full documentation for Postgres
is at http://www.postgresql.org/docs/.

For Phase 2, you need access to a webserver. You will use the webserver that is provided
by the CMU Computer Club, which allows web content to be served directly from your
Andrew s home directory in AFS without manual publishing. More details are in here:
http://www.club.cc.cmu.edu/doc/contribweb.php.

To get started, please follow the following steps:

1. Log-in here http://my.contrib.andrew.cmu.edu using your Andrew ID, in order
to set up your account for the Contributed server.

2. Read carefully the information provided by the Computer Club on how to set up
your Postgres account and access the database on their server: http://www.club.
cc.cmu.edu/doc/contribweb/sql.php.

3. Unzip hw7.zip and copy its contents on a folder called cmupostly inside the www

directory on your andrew AFS account.

4. Edit config.php to have the appropriate parameters for your site (the web address
and your Postgres database information). Also, make sure that your files are set to
be both read and executed by anyone (chmod +rx).

5. Open your favorite web browser and go to http://www.contrib.andrew.cmu.edu/

~andrew_id/cmupostly replacing andrew id with your own Andrew ID. Make sure
that you can see the Login screen of CMUPostly.

6. You are ready to start implementing functions.php!

3.2 IMPORTANT: Customization

• functions.php: The provided hw7.zip includes a source file functions.php which
contains the definitions of the API functions that you will have to implement. This
is the main file that you need to edit.

• config.php: Moreover, you will have to edit config.php and fill in your own log-in
information for the database, as well as your host information.

3.3 Strong hints

Running prototype See http://www.contrib.andrew.cmu.edu/~hongbin/cmupostly/.
for a prototype with all required functions.

Question 2 continues. . .

http://www.postgresql.org/docs/
http://www.club.cc.cmu.edu/doc/contribweb.php
http://my.contrib.andrew.cmu.edu
http://www.club.cc.cmu.edu/doc/contribweb/sql.php
http://www.club.cc.cmu.edu/doc/contribweb/sql.php
http://www.contrib.andrew.cmu.edu/~andrew_id/cmupostly
http://www.contrib.andrew.cmu.edu/~andrew_id/cmupostly
http://www.contrib.andrew.cmu.edu/~hongbin/cmupostly/

15-415/615 Homework 7, Page 9 of 10 Ph1: 3/31; Ph2: 4/14, 1:30pm

You are strongly encouraged to use this website in order to guide your own implementa-
tion, especially in cases when you are not sure if your design/implementation is working
correctly.

Some sample functional tests Additionally, we provide you with a set of basic
functional tests, similar to the ones that we will be using for grading Phase 2. These
tests will firstly reset the database (i.e. USE WITH CARE) and then evaluate the
functionalities of the API that you have implemented. You are welcome to develop your
own unit tests based on the provided ones.

To run the tests, just visit http://www.contrib.andrew.cmu.edu/~andrew_id/cmupostly/
tests with your browser, and the tests will all be run sequentially, showing errors if any.
Please note that by default these tests will fail because the functionalities aren’t there
yet, but it is strongly suggested that you run these tests often and along with your
development, as a way to guide you through the development process.

Feel free to navigate the actual test files (i.e. the tests.js file) in the tests folder,
and do your best to add more tests. You may find more information about the nice
testing framework called Mocha at http://mochajs.org/, the BDD style assertions at
http://chaijs.com/, and also the jQuery based Ajax call at http://api.jquery.com/
jquery.ajax/.

Note that we will be using more than what’s included in the current tests file to evaluate
your code in the evaluation process. So please test for all possible edge cases.

“Sharpen Your Axe” Last but not the least, remember to choose good tools to
facilitate your development process. Some recommendations are: a good and handy
editor (e.g. vi/emacs or IDEs like PhpStorm), a code version control tool (e.g. git),
a front-end testing tool (e.g. curl or Chrome’s built-in inspector), and test oriented
development process (e.g. the tests page that runs all functional tests). Good luck!

3.4 Optional documentation

For this phase, you will have to write some PHP, and in case you want to develop your
own unit tests, some javascript and JSON object manipulation in PHP. Here we point
you to some useful links:

1. PHP manual http://www.php.net/

2. Arrays in PHP http://www.php.net/manual/en/language.types.array.php

3. PHP and Postgres http://www.php.net/manual/en/book.pgsql.php

4. Javascript tutorial http://www.w3schools.com/js/DEFAULT.asp

5. JSON in PHP http://www.php.net/manual/en/ref.json.php

6. Mocha.js testing framework http://mochajs.org/

Question 2 continues. . .

http://www.contrib.andrew.cmu.edu/~andrew_id/cmupostly/tests
http://www.contrib.andrew.cmu.edu/~andrew_id/cmupostly/tests
http://mochajs.org/
http://chaijs.com/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://www.php.net/
http://www.php.net/manual/en/language.types.array.php
http://www.php.net/manual/en/book.pgsql.php
http://www.w3schools.com/js/DEFAULT.asp
http://www.php.net/manual/en/ref.json.php
http://mochajs.org/

15-415/615 Homework 7, Page 10 of 10 Ph1: 3/31; Ph2: 4/14, 1:30pm

7. Chai.js assertion library http://chaijs.com/

8. jQuery http://api.jquery.com/

End of Homework 7

http://chaijs.com/
http://api.jquery.com/

	Introduction
	Requirements
	Data requirements
	Functionality requirements

	Setup and Hints for Phase 2
	VERY IMPORTANT: Set up
	IMPORTANT: Customization
	Strong hints
	Optional documentation

