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Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#23: Distributed Database Systems
(R&G ch. 22)

CMU SCS

Administrivia — Final Exam

* Who: You

* What: R&G Chapters 15-22

* When: Tuesday May 6th 5:30pm- 8:30pm
* Where: WEH 7500

» Why: Databases will help your love life.
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Today’s Class

« High-level overview of distributed DBMSs.

» Not meant to be a detailed examination of
all aspects of these systems.
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Today’s Class

» Overview & Background
« Design Issues

+ Distributed OLTP

« Distributed OLAP

* Real-world Examples
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¥ " Why Do We Need
Parallel/Distributed DBMSs?

+ PayPal in 2008...

« Single, monolithic Oracle installation.
+ Had to manually move data every xmas.
* Legal restrictions.
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¥ "™ Why Do We Need
Parallel/Distributed DBMSs?

« Increased Performance.
* Increased Availability.
« Potentially Lower TCO.

Faloutsos/Pavio CMU SCS 15-415/615 6




Faloutsos/Pavlo

CMU SCS

Parallel/Distributed DBMS

« Database is spread out across multiple
resources to improve parallelism.

« Appears as a single database instance to the
application.

— SQL query for a single-node DBMS should

generate same result on a parallel or distributed
DBMS.
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Parallel vs. Distributed

 Parallel DBMSs:

— Nodes are physically close to each other.

— Nodes connected with high-speed LAN.

— Communication cost is assumed to be small.
+ Distributed DBMSs:

— Nodes can be far from each other.

— Nodes connected using public network.

— Communication cost and problems cannot be
ignored.
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Database Architectures

 The goal is parallelize operations across
multiple resources.
- CPU
— Memory
— Network
— Disk
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Database Architectures

20 228 5EF

Shared . Shared . Shared

Memory Disk Nothing
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Shared Memory

» CPUs and disks have access

to common memory via a fast | 'm‘
| Network |
interconnect.

— Very efficient to send * * *

messages between processors.

— Sometimes called “shared e )
everything”

» Examples: All single-node DBMSs.
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B Shared Disk

« All CPUs can access all disks |
directly via an interconnect |
but each have their own
private memories.
— Easy fault tolerance. | ‘
— Easy consistency since there is
a single copy of DB.

» Examples: Oracle Exadata, ScaleDB.
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B Shared Nothing

« Each DBMS instance has its |
own CPU, memory, and disk. |
 Nodes only communicate :
with each other via network.
— Easy to increase capacity.
— Hard to ensure consistency.

Network

» Examples: Vertica, Parallel DB2, MongoDB.

Faloutsos/Pavio CMU SCS 15-415/615 13

% CMU SCS
Early Systems

* MUFFIN — UC Berkeley (1979)

» SDD-1 - CCA (1980)

+ System R* — IBM Research (1984)

+ Gamma — Univ. of Wisconsin (1986)
» NonStop SQL — Tandem (1987)
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Inter- vs. Intra-query Parallelism

« Inter-Query: Different queries or txns are
executed concurrently.
— Increases throughput but not latency.
— Already discussed for shared-memory DBMSs.
« Intra-Query: Execute the operations of a
single query in parallel.
— Increases latency for long-running queries.
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Parallel/Distributed DBMSs

 Advantages:

— Data sharing.

— Reliability and availability.

— Speed up of query processing.
« Disadvantages:

— May increase processing overhead.
— More database design issues.
— Harder to ensure ACID guarantees.
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» Overview & Background
mp - Design Issues

« Distributed OLTP

« Distributed OLAP

+ Real-world Examples
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Design Issues

« How do we store data across nodes?
How does the application find data?

» How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

» How does the DBMS ensure correctness?
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Database Partitioning

« Split database across multiple resources:
— Disks, nodes, processors.
— Sometimes called “sharding”

« The DBMS executes query fragments on
each partition and then combines the results
to produce a single answer.
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Naive Table Partitioning

+ Each node stores one and only table.

« Assumes that each node has enough storage
space for a table.
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Tuplel
Tuple2
Tuple3
Tuple4

Tuples

Naive Table Partitioning

Tablel Table2

»

Ideal Query:

{SELECT * FROM table
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Horizontal Partitioning

* Split a table’s tuples into disjoint subsets.

— Choose column(s) that divides the database
equally in terms of size, load, or usage.

— Each tuple contains all of its columns.
» Three main approaches:

— Round-robin Partitioning.

— Hash Partitioning.

— Range Partitioning.
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Horizontal Partitioning
o Partitions
Partitioning Key
Tuplel PL P2
Tuple2 < <
Tuple3 »
Tuple4 P3 P4
Tuples = =
Ideal Query: (3
SELECT * FROM table N
WHERE partitionKey = ?
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Vertical Partitioning

« Split the columns of tuples into fragments:
— Each fragment contains all of the tuples’ values
for column(s).
« Need to include primary key or unique
record id with each partition to ensure that
the original tuple can be reconstructed.
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Vertical Partitioning
Table Partitions
Tuplel P1 P2
Tuple2 ~—~ -
Tuple3
Tupled » P3 P4
Tuples — -
Ideal Query: X P5
{SELECT column FROM table | =
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Replication

« Partition Replication: Store a copy of an
entire partition in multiple locations.
— Master — Slave Replication

» Table Replication: Store an entire copy of
a table in each partition.
— Usually small, read-only tables.

« The DBMS ensures that updates are
propagated to all replicas in either case.
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Replication
Partition Replication Table Replication
|
P1 Stave
Master
Slave
P2
P2 < Slave
- )
Master 15
Slave
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Data Transparency

« Users should not be required to know where
data is physically located, how tables are
partitioned or replicated.

» A SQL query that works on a single-node
DBMS should work the same on a
distributed DBMS.
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OLTP vs. OLAP

* On-line Transaction Processing:
— Short-lived txns.
— Small footprint.
— Repetitive operations.

+ On-line Analytical Processing:
— Long running queries.
— Complex joins.
— Exploratory queries.

Faloutsos/Pavio CMU SCS 15-415/615 29

CMU SCS

Workload Characterization
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Today’s Class

» Overview & Background
« Design Issues
=) Distributed OLTP
« Distributed OLAP
* Real-world Examples
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Distributed OLTP

» Execute txns on a distributed DBMS.
« Used for user-facing applications:

— Example: Credit card processing.
» Key Challenges:

— Consistency

— Availability
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% " Single-Node vs. Distributed
Transactions

« Single-node txns do not require the DBMS
to coordinate behavior between nodes.

« Distributed txns are any txn that involves
more than one node.

— Requires expensive coordination.
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Simple Example

Execute Queries '

N
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Application
Server Iy
~a.
Node 2
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Transaction Coordination

 Assuming that our DBMS supports multi-
operation txns, we need some way to
coordinate their execution in the system.
 Two different approaches:
— Centralized: Global “traffic cop”.
— Decentralized: Nodes organize themselves.

Faloutsos/Pavio CMU SCS 15-415/615 35

% CMU SCS ]
TP Monitors

« Example of a centralized coordinator.

« Originally developed in the 1970-80s to
provide txns between terminals +
mainframe databases.

— Examples: ATMs, Airline Reservations.

« Many DBMSs now support the same

functionality internally.
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Centralized Coordinator

Safe to commit?

Commit
Request

CMU - 15-415/615

-
Application
Server 8]
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Centralized Coordinator

Query
Requests

Application
Server

Partitions

1 Safe to commit?

1eM3|PPIA
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Decentralized Coordinator

Partitions
Safe to commit?

Commit
Request

T

L

Application
Server
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Observation

» Q: How do we ensure that all nodes agree
to commit a txn?
— What happens if a node fails?
— What happens if our messages show up late?

Faloutsos/Pavio CMU SCS 15-415/615 40

CMU - 15-415/615

& CAP Theorem

 Proposed by Eric Brewer that it is
impossible for a distributed system to
always be:
— Consistent
— Always Available
— Network Partition Tolerant

» Proved in 2002. Brewer

Pick Two!
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B CAP Theore
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ConS|stency \‘w

Availability |
Partition Tolerant\

‘\

Still operate correctly
despite message loss.

Faloutsos/Pavio CMU SCS 15-415/615

14



Faloutsos/Pavlo

% CMU SCS

CAP — Consistency

Must see both changes

or no changes

SetA=2,B=9] | ~{A=2[B=9]

Application
Server

A=2
B=9

Node 1
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Application
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Node 2
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CAP — Availability

Faloutsos/Pavio
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B=8
Application Application
Server Server
A=1
B=8
e
Node 1 Node 2
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CAP — Partition Tolerance
‘ SsetA=2,B=9] [setA=3,B=6]
Application Application
Server Server
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CAP Theore

These are essentially
the same!

+ Relational DBMSs: CA/CP
— Examples: IBM DB2, MySQL Cluster, VoltDB
* NoSQL DBMSs: AP
— Examples: Cassandra, Riak, DynamoDB
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Atomic Commit Protocol

* When a multi-node txn finishes, the DBMS
needs to ask all of the nodes involved
whether it is safe to commit.

— All nodes must agree on the outcome

« Examples:

— Two-Phase Commit
— Three-Phase Commit
— Paxos
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Two-Phase Commit

) Commit -
~ Request g
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Application =7 |5
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Node 1 Node 3
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Two-Phase Commit

Commit
Request

Application ‘ s B

Server
Phasel: Prepare Node 2

Phase2: Abort

. =

Node 1 Node 3
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Two-Phase Commit

» Each node has to record the outcome of
each phase in a stable storage log.

Q: What happens if coordinator crashes?
— Participants have to decide what to do.
Q: What happens if participant crashes?
— Coordinator assumes that it responded with an
abort if it hasn’t sent an acknowledgement yet.
The nodes have to block until they can
figure out the correct action to take.
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Three-Phase Commit

 The coordinator fi|Failure doesn’t always hat it
intends to commit\..mean a hard crash.

« If the coordinator fails, then the participants
elect a new coordinator and finish commit.

» Nodes do not have to block if there are no
network partitions.
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Paxos

« Consensus protocol where a coordinator
proposes an outcome (e.g., commit or abort)
and then the participants vote on whether
that outcome should succeed.

« Does not block if a majority of participants
are available and has provably minimal
message delays in the best case.

— First correct protocol that was provably
resilient in the face asynchronous networks
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2PC vs. Paxos

» Two-Phase Commit: blocks if coordinator
fails after the prepare message is sent, until
coordinator recovers.

« Paxos: non-blocking as long as a majority
participants are alive, provided there is a
sufficiently long period without further
failures.
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Distributed Concurrency Control

« Need to allow multiple txns to execute
simultaneously across multiple nodes.
— Many of the same protocols from single-node
DBMSs can be adapted.
« This is harder because of:
— Replication.
— Network Communication Overhead.
— Node Failures.
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B Distributed 2PL
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Recovery

* Q: What do we do if a node crashes in
CA/CP DBMS?

« If node is replicated, use Paxos to elect a
new primary.
— If node is last replica, halt the DBMS.

« Node can recover from checkpoints + logs
and then catch up with primary.
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Today’s Class

 Overview & Background
* Design Issues
* Distributed OLTP
=) Distributed OLAP
* Real-world Examples
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B Distributed OLAP

« Execute analytical queries that examine
large portions of the database.
« Used for back-end data warehouses:
— Example: Data mining
+ Key Challenges:
— Data movement.
— Query planning.
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Distributed OLAP
Single Complex Partitions
Query
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Distributed Joins Are Hard

SELECT * FROM tablel, table2
WHERE tablel.val = table2.val

+ Assume tables are horizontally partitioned:
— Tablel Partition Key — tablel.key
— Table2 Partition Key — table2.key

* Q: How to execute?

« Naive solution is to send all partitions to a
single node and compute join.
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Semi-Joins

« Main Idea: First distribute the join attributes
between nodes and then recreate the full
tuples in the final output.

— Send just enough data from each table to
compute which rows to include in output.

« Lots of choices make this problem hard:

— What to materialize?
— Which table to send?
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Overview & Background
« Design Issues
Distributed OLTP
Distributed OLAP
Real-world Examples
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NuoDB

« Distributed MVCC+OCC.

« Split the database into “atoms” (i.e., blocks)
— Nodes assigned as executor and storage nodes.
— Move atoms to the node where a txn is executing,

push writes at commi
Atom Request
]
Query Request / —

Storage Node

h Executor Node\ ==

nuo T

Storage Node
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Facebook Infrastructure

» World’s largest MySQL cluster.
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Google Spanner
« 2PL+ T/O

« Ensures ordering through globally unique
timestamping ordering generated from
atomic clocks and GPS devices.

]
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Google Spanner
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Summary

« Everything is harder in a distributed setting:
— Concurrency Control
— Query Execution
— Recovery
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Next Class

« Discuss distributed OLAP more.
— You’ll learn why MapReduce was a bad idea.
» Compare NoSQL vs. NewSQL

« Learn the answer to the #1 student question:
— What DBMS should | use for my start-up?
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