Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#23: Distributed Database Systems
(R&G ch. 22)

CMU SCS

Administrivia — Final Exam

* Who: You

* What: R&G Chapters 15-22

* When: Tuesday May 6th 5:30pm- 8:30pm
* Where: WEH 7500

» Why: Databases will help your love life.

Faloutsos/Pavio CMU SCS 15-415/615 2

% CMU SCS
Today’s Class

« High-level overview of distributed DBMSs.

» Not meant to be a detailed examination of
all aspects of these systems.

Faloutsos/Pavio CMU SCS 15-415/615 3

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Today’s Class

» Overview & Background
« Design Issues

+ Distributed OLTP

« Distributed OLAP

* Real-world Examples

Faloutsos/Pavio CMU SCS 15-415/615 4

¥ " Why Do We Need
Parallel/Distributed DBMSs?

+ PayPal in 2008...

« Single, monolithic Oracle installation.
+ Had to manually move data every xmas.
* Legal restrictions.

Faloutsos/Pavio CMU SCS 15-415/615 5

¥ "™ Why Do We Need
Parallel/Distributed DBMSs?

« Increased Performance.
* Increased Availability.
« Potentially Lower TCO.

Faloutsos/Pavio CMU SCS 15-415/615 6

Faloutsos/Pavlo

CMU SCS

Parallel/Distributed DBMS

« Database is spread out across multiple
resources to improve parallelism.

« Appears as a single database instance to the
application.

— SQL query for a single-node DBMS should

generate same result on a parallel or distributed
DBMS.

Faloutsos/Pavio CMU SCS 15-415/615

CMU - 15-415/615

CMU SCS

Parallel vs. Distributed

 Parallel DBMSs:

— Nodes are physically close to each other.

— Nodes connected with high-speed LAN.

— Communication cost is assumed to be small.
+ Distributed DBMSs:

— Nodes can be far from each other.

— Nodes connected using public network.

— Communication cost and problems cannot be
ignored.

Faloutsos/Pavio CMU SCS 15-415/615

CMU SCS

Database Architectures

 The goal is parallelize operations across
multiple resources.
- CPU
— Memory
— Network
— Disk

Faloutsos/Pavio CMU SCS 15-415/615

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Database Architectures

20 228 5EF

Shared . Shared . Shared

Memory Disk Nothing
Faloutsos/Pavio CMU SCS 15-415/615 10

Shared Memory

» CPUs and disks have access

to common memory via a fast | 'm‘
| Network |
interconnect.

— Very efficient to send * * *

messages between processors.

— Sometimes called “shared e)
everything”

» Examples: All single-node DBMSs.

Faloutsos/Pavio CMU SCS 15-415/615 11

B Shared Disk

« All CPUs can access all disks |
directly via an interconnect |
but each have their own
private memories.
— Easy fault tolerance. | ‘
— Easy consistency since there is
a single copy of DB.

» Examples: Oracle Exadata, ScaleDB.

Faloutsos/Pavio CMU SCS 15-415/615 12

Faloutsos/Pavlo CMU - 15-415/615

B Shared Nothing

« Each DBMS instance has its |
own CPU, memory, and disk. |
 Nodes only communicate :
with each other via network.
— Easy to increase capacity.
— Hard to ensure consistency.

Network

» Examples: Vertica, Parallel DB2, MongoDB.

Faloutsos/Pavio CMU SCS 15-415/615 13

% CMU SCS
Early Systems

* MUFFIN — UC Berkeley (1979)

» SDD-1 - CCA (1980)

+ System R* — IBM Research (1984)

+ Gamma — Univ. of Wisconsin (1986)
» NonStop SQL — Tandem (1987)

.
'v;

% ‘@

Stonebraker Bernstein Mohan DeWitt Gray

CMU SCS

Inter- vs. Intra-query Parallelism

« Inter-Query: Different queries or txns are
executed concurrently.
— Increases throughput but not latency.
— Already discussed for shared-memory DBMSs.
« Intra-Query: Execute the operations of a
single query in parallel.
— Increases latency for long-running queries.

Faloutsos/Pavio CMU SCS 15-415/615 15

Faloutsos/Pavlo CMU - 15-415/615

CMU SCS

Parallel/Distributed DBMSs

 Advantages:

— Data sharing.

— Reliability and availability.

— Speed up of query processing.
« Disadvantages:

— May increase processing overhead.
— More database design issues.
— Harder to ensure ACID guarantees.

Faloutsos/Pavio CMU SCS 15-415/615

g CMU SCS
Today’s Class

» Overview & Background
mp - Design Issues

« Distributed OLTP

« Distributed OLAP

+ Real-world Examples

Faloutsos/Pavio CMU SCS 15-415/615

% CMU SCS]
Design Issues

« How do we store data across nodes?
How does the application find data?

» How to execute queries on distributed data?
— Push query to data.
— Pull data to query.

» How does the DBMS ensure correctness?

Faloutsos/Pavio CMU SCS 15-415/615

Faloutsos/Pavlo

CMU SCS

Database Partitioning

« Split database across multiple resources:
— Disks, nodes, processors.
— Sometimes called “sharding”

« The DBMS executes query fragments on
each partition and then combines the results
to produce a single answer.

Faloutsos/Pavio CMU SCS 15-415/615 19

CMU - 15-415/615

CMU SCS

Naive Table Partitioning

+ Each node stores one and only table.

« Assumes that each node has enough storage
space for a table.

Faloutsos/Pavio CMU SCS 15-415/615 20

CMU SCS

Tuplel
Tuple2
Tuple3
Tuple4

Tuples

Naive Table Partitioning

Tablel Table2

»

Ideal Query:

{SELECT * FROM table

Faloutsos/Pavio CMU SCS 15-415/615

Partitions

Tablel

.

Table2

N A

Faloutsos/Pavlo CMU - 15-415/615

Horizontal Partitioning

* Split a table’s tuples into disjoint subsets.

— Choose column(s) that divides the database
equally in terms of size, load, or usage.

— Each tuple contains all of its columns.
» Three main approaches:

— Round-robin Partitioning.

— Hash Partitioning.

— Range Partitioning.

Faloutsos/Pavio CMU SCS 15-415/615 22
Horizontal Partitioning
o Partitions
Partitioning Key
Tuplel PL P2
Tuple2 < <
Tuple3 »
Tuple4 P3 P4
Tuples = =
Ideal Query: (3
SELECT * FROM table N
WHERE partitionKey = ?
Faloutsos/Pavio CMU SCS 15-415/615 23

Vertical Partitioning

« Split the columns of tuples into fragments:
— Each fragment contains all of the tuples’ values
for column(s).
« Need to include primary key or unique
record id with each partition to ensure that
the original tuple can be reconstructed.

Faloutsos/Pavio CMU SCS 15-415/615 24

Faloutsos/Pavlo CMU - 15-415/615

Vertical Partitioning
Table Partitions
Tuplel P1 P2
Tuple2 ~—~ -
Tuple3
Tupled » P3 P4
Tuples — -
Ideal Query: X P5
{SELECT column FROM table | =
Faloutsos/Pavio CMU SCS 15-415/615 25
Replication

« Partition Replication: Store a copy of an
entire partition in multiple locations.
— Master — Slave Replication

» Table Replication: Store an entire copy of
a table in each partition.
— Usually small, read-only tables.

« The DBMS ensures that updates are
propagated to all replicas in either case.

Faloutsos/Pavio CMU SCS 15-415/615 26
% CMU SCS
Replication
Partition Replication Table Replication
|
P1 Stave
Master
Slave
P2
P2 < Slave
-)
Master 15
Slave
Faloutsos/Pavio CMU SCS 15-415/615 27

Faloutsos/Pavlo

CMU SCS

Data Transparency

« Users should not be required to know where
data is physically located, how tables are
partitioned or replicated.

» A SQL query that works on a single-node
DBMS should work the same on a
distributed DBMS.

Faloutsos/Pavio CMU SCS 15-415/615 28

CMU - 15-415/615

CMU SCS

OLTP vs. OLAP

* On-line Transaction Processing:
— Short-lived txns.
— Small footprint.
— Repetitive operations.

+ On-line Analytical Processing:
— Long running queries.
— Complex joins.
— Exploratory queries.

Faloutsos/Pavio CMU SCS 15-415/615 29

CMU SCS

Workload Characterization

>

P>

> Complex o \
s OLAP \
& :)
=2 . ,,/
1S Social ’
83 Networks
c
2 ‘
IS ; OLTP)
by . AN e
8. Simple -~

Writes Reads

Workload Focus

Michael Stonebraker — “7en Rules For Scalable Pe
hit

10

http://cacm.acm.org/magazines/2011/6/108651

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Today’s Class

» Overview & Background
« Design Issues
=) Distributed OLTP
« Distributed OLAP
* Real-world Examples

Faloutsos/Pavio CMU SCS 15-415/615

g CMU SCS]]
Distributed OLTP

» Execute txns on a distributed DBMS.
« Used for user-facing applications:

— Example: Credit card processing.
» Key Challenges:

— Consistency

— Availability

Faloutsos/Pavio CMU SCS 15-415/615

% " Single-Node vs. Distributed
Transactions

« Single-node txns do not require the DBMS
to coordinate behavior between nodes.

« Distributed txns are any txn that involves
more than one node.

— Requires expensive coordination.

Faloutsos/Pavio CMU SCS 15-415/615

11

Faloutsos/Pavlo

% CMU SCS]
Simple Example

Execute Queries '

N

CMU - 15-415/615

Application
Server Iy
~a.
Node 2
Faloutsos/Pavio
g CMU SCS

Transaction Coordination

 Assuming that our DBMS supports multi-
operation txns, we need some way to
coordinate their execution in the system.
 Two different approaches:
— Centralized: Global “traffic cop”.
— Decentralized: Nodes organize themselves.

Faloutsos/Pavio CMU SCS 15-415/615 35

% CMU SCS]
TP Monitors

« Example of a centralized coordinator.

« Originally developed in the 1970-80s to
provide txns between terminals +
mainframe databases.

— Examples: ATMs, Airline Reservations.

« Many DBMSs now support the same

functionality internally.

Faloutsos/Pavio CMU SCS 15-415/615 36

12

Faloutsos/Pavlo

CMU SCS

Centralized Coordinator

Safe to commit?

Commit
Request

CMU - 15-415/615

-
Application
Server 8]
Faloutsos/Pavio CMU SCS 15-415/615 37
CMU sCS

Centralized Coordinator

Query
Requests

Application
Server

Partitions

1 Safe to commit?

1eM3|PPIA

Faloutsos/Pavio CMU SCS 15-415/615 38

CMU SCS

Decentralized Coordinator

Partitions
Safe to commit?

Commit
Request

T

L

Application
Server

Faloutsos/Pavio CMU SCS 15-415/615 39

13

Faloutsos/Pavlo

% CMU SCS]
Observation

» Q: How do we ensure that all nodes agree
to commit a txn?
— What happens if a node fails?
— What happens if our messages show up late?

Faloutsos/Pavio CMU SCS 15-415/615 40

CMU - 15-415/615

& CAP Theorem

 Proposed by Eric Brewer that it is
impossible for a distributed system to
always be:
— Consistent
— Always Available
— Network Partition Tolerant

» Proved in 2002. Brewer

Pick Two!

Faloutsos/Pavio CMU SCS 15-415/615 41

B CAP Theore

. /
) / \ o@ /
ConS|stency \‘w

Availability |
Partition Tolerant\

‘\

Still operate correctly
despite message loss.

Faloutsos/Pavio CMU SCS 15-415/615

14

Faloutsos/Pavlo

% CMU SCS

CAP — Consistency

Must see both changes

or no changes

SetA=2,B=9] | ~{A=2[B=9]

Application
Server

A=2
B=9

Node 1

Faloutsos/Pavio

) [

CMU SCS 15-415/615

Application
Server

A=2

Node 2

CMU - 15-415/615

% CMU SCS

CAP — Availability

Faloutsos/Pavio

CMU SCS 15-415/615

B=8
Application Application
Server Server
A=1
B=8
e
Node 1 Node 2
Faloutsos/Pavio CMU SCS 15-415/615 44
% CMU SCS
CAP — Partition Tolerance
‘ SsetA=2,B=9] [setA=3,B=6]
Application Application
Server Server

15

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS

CAP Theore

These are essentially
the same!

+ Relational DBMSs: CA/CP
— Examples: IBM DB2, MySQL Cluster, VoltDB
* NoSQL DBMSs: AP
— Examples: Cassandra, Riak, DynamoDB

Faloutsos/Pavio CMU SCS 15-415/615 46

g CMU SCS]]
Atomic Commit Protocol

* When a multi-node txn finishes, the DBMS
needs to ask all of the nodes involved
whether it is safe to commit.

— All nodes must agree on the outcome

« Examples:

— Two-Phase Commit
— Three-Phase Commit
— Paxos

Faloutsos/Pavio CMU SCS 15-415/615 47

% CMU SCS

Two-Phase Commit

) Commit -
~ Request g
- N I/ 2) _g.
- Cox)3
Application =7 |5
Server J=

Phasel: Prepare Node 2

S 77 7 I
2 : . 2
c Phase2: Commit =
o ro.
S 3 —3 B
8 . = 2

Node 1 Node 3

Faloutsos/Pavio CMU SCS 15-415/615 48

16

Faloutsos/Pavlo

% CMU SCS]
Two-Phase Commit

Commit
Request

Application ‘ s B

Server
Phasel: Prepare Node 2

Phase2: Abort

. =

Node 1 Node 3

Faloutsos/Pavio CMU SCS 15-415/615 49

CMU - 15-415/615

g CMU SCS]
Two-Phase Commit

» Each node has to record the outcome of
each phase in a stable storage log.

Q: What happens if coordinator crashes?
— Participants have to decide what to do.
Q: What happens if participant crashes?
— Coordinator assumes that it responded with an
abort if it hasn’t sent an acknowledgement yet.
The nodes have to block until they can
figure out the correct action to take.

Faloutsos/Pavio CMU SCS 15-415/615 50

% CMU SCS
Three-Phase Commit

 The coordinator fi|Failure doesn’t always hat it
intends to commit\..mean a hard crash.

« If the coordinator fails, then the participants
elect a new coordinator and finish commit.

» Nodes do not have to block if there are no
network partitions.

Faloutsos/Pavio CMU SCS 15-415/615 51

17

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Paxos

« Consensus protocol where a coordinator
proposes an outcome (e.g., commit or abort)
and then the participants vote on whether
that outcome should succeed.

« Does not block if a majority of participants
are available and has provably minimal
message delays in the best case.

— First correct protocol that was provably
resilient in the face asynchronous networks

Faloutsos/Pavio CMU SCS 15-415/615 52

g CMU SCS
2PC vs. Paxos

» Two-Phase Commit: blocks if coordinator
fails after the prepare message is sent, until
coordinator recovers.

« Paxos: non-blocking as long as a majority
participants are alive, provided there is a
sufficiently long period without further
failures.

Faloutsos/Pavio CMU SCS 15-415/615 53

CMU SCS

Distributed Concurrency Control

« Need to allow multiple txns to execute
simultaneously across multiple nodes.
— Many of the same protocols from single-node
DBMSs can be adapted.
« This is harder because of:
— Replication.
— Network Communication Overhead.
— Node Failures.

Faloutsos/Pavio CMU SCS 15-415/615 54

18

Faloutsos/Pavlo CMU - 15-415/615

B Distributed 2PL

[seta=2, B=9] [setA=0, B=7]

Application

Application
Server

Server

i
I
————:——--
~

’ 4

\E<:>:

Waits-for Graph

Nodﬁ\p 0‘@ 4%(0(19 2
@ 55

Faloutsos/Pavio

g CMU SCS
Recovery

* Q: What do we do if a node crashes in
CA/CP DBMS?

« If node is replicated, use Paxos to elect a
new primary.
— If node is last replica, halt the DBMS.

« Node can recover from checkpoints + logs
and then catch up with primary.

Faloutsos/Pavio CMU SCS 15-415/615 56

% CMU SCS
Today’s Class

 Overview & Background
* Design Issues
* Distributed OLTP
=) Distributed OLAP
* Real-world Examples

Faloutsos/Pavio CMU SCS 15-415/615 57

19

Faloutsos/Pavlo CMU - 15-415/615

B Distributed OLAP

« Execute analytical queries that examine
large portions of the database.
« Used for back-end data warehouses:
— Example: Data mining
+ Key Challenges:
— Data movement.
— Query planning.

Faloutsos/Pavio CMU SCS 15-415/615 58
Distributed OLAP
Single Complex Partitions
Query
N, [P]
b\
[es
o ==\
Application %)
Server [ps]

Faloutsos/Pavio CMU SCS 15-415/615

CMU SCS

Distributed Joins Are Hard

SELECT * FROM tablel, table2
WHERE tablel.val = table2.val

+ Assume tables are horizontally partitioned:
— Tablel Partition Key — tablel.key
— Table2 Partition Key — table2.key

* Q: How to execute?

« Naive solution is to send all partitions to a
single node and compute join.

Faloutsos/Pavio CMU SCS 15-415/615 60

20

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS]]
Semi-Joins

« Main Idea: First distribute the join attributes
between nodes and then recreate the full
tuples in the final output.

— Send just enough data from each table to
compute which rows to include in output.

« Lots of choices make this problem hard:

— What to materialize?
— Which table to send?

Faloutsos/Pavio CMU SCS 15-415/615 61

g CMU SCS
Today’s Class

Overview & Background
« Design Issues
Distributed OLTP
Distributed OLAP
Real-world Examples

¢

Faloutsos/Pavio CMU SCS 15-415/615 62

% CMU SCS
NuoDB

« Distributed MVCC+OCC.

« Split the database into “atoms” (i.e., blocks)
— Nodes assigned as executor and storage nodes.
— Move atoms to the node where a txn is executing,

push writes at commi
Atom Request
]
Query Request / —

Storage Node

h Executor Node\ ==

nuo T

Storage Node

21

http://www.nuodb.com/

Faloutsos/Pavlo

CMU SCS

Facebook Infrastructure

» World’s largest MySQL cluster.

CMU - 15-415/615

S ™,
© L Imgsac |
s | i Musan
Sl ..
e et
Aobplicati ; 1.5 Mgsét*
pplication Database
Server Memcache Cluster
facebook.
% CMU SCS
Google Spanner
« 2PL+ T/O

« Ensures ordering through globally unique
timestamping ordering generated from
atomic clocks and GPS devices.

]

% CMU SCS
Google Spanner

[setA=2,B=9]

[setA=0,B=7]

Application
Server

Application
Server

22

Faloutsos/Pavlo CMU - 15-415/615

% CMU SCS
Summary

« Everything is harder in a distributed setting:
— Concurrency Control
— Query Execution
— Recovery

Faloutsos/Pavio CMU SCS 15-415/615

g CMU SCS
Next Class

« Discuss distributed OLAP more.
— You’ll learn why MapReduce was a bad idea.
» Compare NoSQL vs. NewSQL

« Learn the answer to the #1 student question:
— What DBMS should | use for my start-up?

Faloutsos/Pavio CMU SCS 15-415/615

23

