
Carnegie Mellon University
Department of Computer Science
15-415/615 - Database Applications

C. Faloutsos & A. Pavlo, Spring 2014

Homework 5

IMPORTANT - what to hand in:

• Please submit your answers in

– hard copy in class at 1:30pm on Thursday, March 18th. The hardcopy
should contain the answers to all the questions (including SQL statements and
database output, whenever stated by the question)

– And electronically on the “blackboard”, by the same date/time.

The electronic submission should be an archive called [andrew id].zip, containing
a folder called queries and a file for each question, called q#.sql, where ’#’ is the
question number. In each such file you should add the SQL statements that you used
in order to answer the question. For your convenience, mirror the structure of the
file http://www.cs.cmu.edu/~epapalex/15415S14/db_hw5_s14.zip, where you can
replace the place-holder scripts /queries/q#.sql with your real answers.

Reminders:

• Plagiarism: Homework may be discussed with other students, but all homework is
to be completed individually.

• Typeset all of your answers whenever possible. Illegible handwriting or ambiguous
answers may get no points, at the discretion of the graders.

• For faster grading, please solve each of the 4 questions on a separate page, i.e.,
4 pages in total for this homework. Type course-id, hw-id, question-id, and your
name and Andrew ID on each of the 4 pages.

• Late Homeworks: If you are turning your homework in late, please email it

– to all TAs
– with the subject line exactly 15-415 Homework Submission (HW 5)

– the count of slip-days you are using, and the count you have left.

For your information:

• Graded out of 100 points;
• 4 questions total

1

http://www.cs.cmu.edu/~epapalex/15415S14/db_hw5_s14.zip

15-415/615 Homework 5, Page 2 of 12 2/27/2014, 1:30pm

• Rough time estimate: 4-6 hours (1 - 1.5 hour for each question on average - some
questions require less time, some more.)

Revision : 2014/03/29 15:40

Question Points Score

Analysis of a simple query 20

Analysis of a slightly more complex query 20

Analyze a simple JOIN query 30

Analyze a slightly more complicated join query 30

Total: 100

Homework 5 continues. . .

15-415/615 Homework 5, Page 3 of 12 2/27/2014, 1:30pm

Introduction The purpose of this homework is to make you familiar with the query
exectution engine of Postgres. In particular, you will have to analyze a few queries, and
answer questions regarding their performance when turning different knobs of the execution
engine.

In order to answer the questions, you might find the following documentation links useful:

• Documentation of EXPLAIN ANALYZE:

http://www.postgresql.org/docs/9.2/static/sql-explain.html.

• Making sense of the EXPLAIN ANALYZE output:

http://www.postgresql.org/docs/9.2/static/performance-tips.html.

• Postgres query planner documentation:

http://www.postgresql.org/docs/9.2/static/runtime-config-query.html.

• How to create an index:

http://www.postgresql.org/docs/9.2/static/sql-createindex.html.

IMPORTANT:
Even though we will be using the same database schema as in homework 2, you should re-

run the database setup using the files for homework 5, since the loading script for homework
2 was creating indexes that should not be in place for this homework. You can download
the new files from

http://www.cs.cmu.edu/~epapalex/15415S14/db_hw5_s14.zip.
In the following lines, for your convenience, we copy the directions from HW2.
Database details - (same directions as in HW2, feel free to skip)

The database contains two tables:

• movies(mid, title, year, num ratings, rating)
• play in(mid, name, cast position)

The tables contain the obvious information: which actor played in what movie, at what
position; for each movie, we have the title (eg., ’Gone with the wind’), year of production,
count of rating reviews it received, and the average score of those ratings (a float in the
range 0 to 10, with ’10’ meaning ’excellent’).

We will use Postgres, which is installed in the andrew machines. 1

You need to do the following set up steps.

1. Get recommended machine and port number: On the “blackboard” grades table
there are two columns, called ghc## and PGPORT. The first is the number of the ghc

machine we recommend for you, and the other is the recommended port number for
your Postgres server instance. The goal is to avoid conflicts, by having each of you

1 You may develop your queries on your own, local installation of Postgres, but your solutions will be run
and graded on the public installation.

Homework 5 continues. . .

http://www.postgresql.org/docs/9.2/static/sql-explain.html
http://www.postgresql.org/docs/9.2/static/performance-tips.html
http://www.postgresql.org/docs/9.2/static/runtime-config-query.html
http://www.postgresql.org/docs/9.2/static/sql-createindex.html
http://www.cs.cmu.edu/~epapalex/15415S14/db_hw5_s14.zip
http://www.cs.cmu.edu/~epapalex/15415S14/db_hw5_s14.zip

15-415/615 Homework 5, Page 4 of 12 2/27/2014, 1:30pm

running on a different machine, and listening on a different port. To log in to the
recommended machine, type

ssh ghc##.ghc.andrew.cmu.edu

replacing ## by the two digit number you found on “blackboard”.

In the remote case of conflicts, choose a port number close to the one assigned to you
and try again. The GHC machines from 02 to 81 are located in GHC 3000, 5201, and
5205 and can be accessed through ssh. There are also machines in GHC 5208 which
can be accessed physically.

2. Get and edit setup script: Download the HW5 .zip from here:

http://www.cs.cmu.edu/~epapalex/15415S14/db_hw5_s14.zip.

Unzip it and copy the folder db hw5 s14 (make sure the name is exactly this one) it
on your home directory of your andrew account. Edit setup db.sh to modify the line
that assigns a value to PGPORT to the value that you found on blackboard.

3. Set up the db: If your default shell is not bash, type bash and then

bash setup db.sh.

This will start the Postgres server, create a database with your username, create the
schema for this homework, and add data to the database.

4. Test script: Run

bash run queries.sh.

This shell script executes all the queries for this homework (which you have to imple-
ment). Inside the folder you unzipped, there is a folder called queries which contains
place-holder .sql files for all the queries that you have to implement. Replace the
place-holders with your queries, and submit them in a zip file, as we said in the first
page.

5. Optional testing: If you want to test/debug queries separately, you can also use the
script test.sh, included in the homework material.

6. Starting/stopping the Postgres server: see the instructions at

http://www.cs.cmu.edu/~epapalex/15415S14/PostgreSQLReadme.htm.

The full documentation for Postgres is at http://www.postgresql.org/docs/.

Homework 5 continues. . .

http://www.cs.cmu.edu/~epapalex/15415S14/db_hw5_s14.zip
http://www.cs.cmu.edu/~epapalex/15415S14/db_hw5_s14.zip
http://www.cs.cmu.edu/~epapalex/15415S14/PostgreSQLReadme.htm
http://www.cs.cmu.edu/~epapalex/15415S14/PostgreSQLReadme.htm
http://www.postgresql.org/docs/

15-415/615 Homework 5, Page 5 of 12 2/27/2014, 1:30pm

Question 1: Analysis of a simple query [20 points]
Submit on separate page Consider the following query:

SELECT title, year

FROM movies

WHERE rating>=9;

In this question, we will see that indexes can help speeding up queries, when used
appropriately.

Before running any queries, make sure that you have dropped all indexes
that you might have created!

(a) [3 points] Provide the execution plan of the query. Give SQL statement and the
execution plan.

(b) Based on the execution plan:

i. [1 point] What is the estimated total cost of the query? (in arbitrary units)

ii. [1 point] What is the total actual time it took to run? (in ms)

(c) [2 points] Build an index on attribute rating on the movies table. Provide the
SQL statement.

(d) [5 points] Provide the execution plan of the query after you build the index.

(e) [3 points] Has the estimated total cost 1) increased, 2) decreased, or 3) stayed
the same? (answer 1,2, or 3).

(f) [2 points] Has the total actual time it takes to execute the query 1) increased, 2)
decreased, or 3) stayed the same? (answer 1,2, or 3).

(g) Let’s see what happens if you build an index on attribute num ratings on the
movies table (Don’t drop the index on rating).

i. [1 point] Do you expect it to affect the cost of executing the query? (Yes or
No).

ii. [2 points] Build the index (no need to provide the statement). Get the new
estimated total cost from the execution plan. Has it 1) increased, 2) decreased,
or 3) stayed the same? (answer 1,2, or 3).

Solution:

(a) EXPLAIN ANALYZE SELECT title, year from movies where rating>=9;

QUERY PLAN

Seq Scan on movies

(cost=0.00..26.68 rows=125 width=422)

(actual time=0.028..0.483 rows=4 loops=1)

Question 1 continues. . .

15-415/615 Homework 5, Page 6 of 12 2/27/2014, 1:30pm

Filter: (rating >= 9::double precision)

Rows Removed by Filter: 2676

Total runtime: 0.502 ms

(4 rows)

(b) 1. 26.68

2. 0.483ms

(c) CREATE INDEX rating_idx on movies(rating);

(d) QUERY PLAN

Index Scan using rating_idx on movies

(cost=0.00..8.27 rows=1 width=20)

(actual time=0.016..0.019 rows=4 loops=1)

Index Cond: (rating >= 9::double precision)

Total runtime: 0.036 ms

(3 rows)

(e) 2

(f) 2

(g) 1. No.

2. 3 (the estimated total cost is still 8.27)

Homework 5 continues. . .

15-415/615 Homework 5, Page 7 of 12 2/27/2014, 1:30pm

Question 2: Analysis of a slightly more complex query[20 points]
Submit on separate page

Consider the following query:

SELECT title, year

FROM movies

WHERE rating>=9 AND num_ratings >=100;

You might notice that now we have two attributes on the where clause. In this question
we will, again, see how indexes can improve performance.

Before running any queries, make sure that you have dropped all indexes
that you might have created!

(a) [3 points] Provide the execution plan of the query. Give SQL statement and the
execution plan.

(b) Based on the execution plan, answer the following questions:

i. [1 point] What is the estimated total cost of the query? (in arbitrary units)

ii. [1 point] What is the total actual time it took to run? (in ms)

(c) Build an index on rating on the movies table.

i. [2 points] Provide the SQL statement.

ii. [3 points] Based on the new execution plan: Has the estimated total cost 1)
increased, 2) decreased, or 3) stayed the same? (answer 1,2, or 3)

(d) Delete the index on rating and build and index on num ratings on the movies

table.

i. [2 points] Provide the SQL statements.

ii. [3 points] What is the new estimated total cost? (in arbitrary units)

(e) Create indexes on both rating and num ratings. (no need to provide the state-
ment)

i. [2 points] Based on the new execution plan: Compared to the case where you
only have an index on rating, has the total cost 1) increased, 2) decreased, or
3) stayed the same? (an: 1,2, or 3)

ii. [2 points] Based on the new execution plan: Compared to the case where
you only have an index on num ratings, has the total cost 1) increased, 2)
decreased, or 3) stayed the same? (an: 1,2, or 3)

iii. [1 point] Based on the new execution plan: Compared to the case where you
have no indexes, has the total cost 1) increased, 2) decreased, or 3) stayed the
same? (an: 1,2, or 3)

Solution:

(a) EXPLAIN ANALYZE SELECT title, year FROM movies

WHERE rating>=9 AND num_ratings >=100;

Question 2 continues. . .

15-415/615 Homework 5, Page 8 of 12 2/27/2014, 1:30pm

QUERY PLAN

Seq Scan on movies

(cost=0.00..62.20 rows=1 width=20)

(actual time=0.011..0.362 rows=4 loops=1)

Filter: ((rating >= 9::double precision) AND (num_ratings >= 100))

Rows Removed by Filter: 2676

Total runtime: 0.377 ms

(4 rows)

(b) 1. 62.20

2. 0.362 ms

(c) 1. CREATE INDEX rating_idx on movies(rating);

2. 2

(d) 1. DROP INDEX rating_idx;

CREATE INDEX num_ratings_idx on movies(num_ratings);

2. 62.20

(e) The new cost is 8.27.

1. 3

2. 2

3. 2

Homework 5 continues. . .

15-415/615 Homework 5, Page 9 of 12 2/27/2014, 1:30pm

Question 3: Analyze a simple JOIN query [30 points]
Submit on separate page

Consider the following query:

SELECT name, title

FROM movies m , play_in p

WHERE m.mid = p.mid;

In this question, we will see the difference in performance when using an efficient join
algorithm.

Before running any queries, make sure that you have dropped all indexes
that you might have created!

(a) Disable hash and merge-sort join algorithms

i. [4 points] Provide the statements that you used.

ii. [3 points] According to the documentation, what is the join algorithm
that the query planner is going to use?

(b) [3 points] Provide the execution plan of the query. Give SQL statement and the
execution plan.

(c) Based on the execution plan, answer the following questions:

i. [3 points] What is the estimated total cost of the query? (in arbitrary units)

ii. [2 points] What is the total actual time it took to run? (in ms)

(d) [3 points] According to the execution plan, which join algorithm is being used?

(e) [5 points] Force the query planner to use hash join. Provide the SQL statement.

(f) [2 points] Provide the new execution plan after changing the join algorithm. Give
SQL statement and the execution plan.

(g) [5 points] Based on the execution plan after changing the join algorithm, has the
estimated total cost 1) increased, 2) decreased, or 3) stayed the same? (answer 1,2,
or 3)

Solution:

(a) 1. set enable_hashjoin = false;

set enable_mergejoin = false;

2. The default algorithm used is the nested loop join.

(b) EXPLAIN ANALYZE SELECT name, title

FROM movies m , play_in p

WHERE m.mid = p.mid;

Question 3 continues. . .

15-415/615 Homework 5, Page 10 of 12 2/27/2014, 1:30pm

QUERY PLAN

Nested Loop (cost=0.00..6379.73 rows=74772 width=30)

(actual time=0.065..73.428 rows=74772 loops=1)

-> Seq Scan on movies m (cost=0.00..48.80 rows=2680 width=20)

(actual time=0.006..0.396 rows=2680 loops=1)

-> Index Only Scan using play_in_pkey on play_in p

(cost=0.00..2.08 rows=28 width=18) (actual time=0.006..0.020 rows

=28 loops=2680)

Index Cond: (mid = m.mid)

Heap Fetches: 74772

Total runtime: 76.783 ms

(6 rows)

(c) 1. 6379.73

2. 73.428

(d) Nested Loop.

(e) set enable_hashjoin = true;

(f) EXPLAIN ANALYZE SELECT name, title

FROM movies m , play_in p

WHERE m.mid = p.mid;

QUERY PLAN

Hash Join (cost=82.30..2536.07 rows=74772 width=30)

(actual time=0.968..72.362 rows=74772 loops=1)

Hash Cond: (p.mid = m.mid)

-> Seq Scan on play_in p (cost=0.00..1238.72 rows=74772 width=18)

(actual time=0.007..22.769 rows=74772 loops=1)

-> Hash (cost=48.80..48.80 rows=2680 width=20)

(actual time=0.937..0.937 rows=2680 loops=1)

Buckets: 1024 Batches: 1 Memory Usage: 142kB

-> Seq Scan on movies m (cost=0.00..48.80 rows=2680 width=20)

(actual time=0.005..0.361 rows=2680 loops=1)

Total runtime: 81.689 ms

(7 rows)

(g) 2 (The new cost is 2536.07).

Grading info: -1 for not including SQL statements

Homework 5 continues. . .

15-415/615 Homework 5, Page 11 of 12 2/27/2014, 1:30pm

Question 4: Analyze a slightly more complicated join query[30 points]
Submit on separate page

Consider the following query:

SELECT name, title

FROM movies m , play_in p

WHERE m.mid = p.mid

ORDER BY name;

The above join query has also an order by statement added to it. In this question we
are going to

1. Investigate how sorting is executed by the query planner.

2. Investigate whether indexes can help the nested loop join algorithm for this par-
ticular join query (notice that the join query is on the primary key of the movies

table).

Before running any queries, make sure that you have dropped all indexes
that you might have created! Also, make sure that you disable hash and
merge sort joins, as you did in the previous question

(a) [3 points] Provide the execution plan of the query. Give SQL statement and the
execution plan.

(b) Based on the execution plan, answer the following questions:

i. [1 point] What is the estimated total cost of the query? (in arbitrary units)

ii. [1 point] What is the total actual time it took to run? (in ms)

(c) [5 points] Where is the sorting done? (Disk or memory)

(d) [5 points] Create an index on the joining attribute mid on the movies table.
Provide the SQL statement.

(e) [5 points] Based on the execution plan after adding the index, compared to the
case where you have no indexes, has the estimated total cost 1) increased, 2) de-
creased, or 3) stayed the same? (answer 1,2, or 3)

(f) [5 points] Add index on the joining attribute mid on the play in table (and keep
the previous index that you have already added). Provide the SQL statement

(g) [5 points] Based on the execution plan after adding the second index, compared
to the case where you have index on the movies table, has the estimated total cost
1) increased, 2) decreased, or 3) stayed the same? (answer 1,2, or 3)

Solution:

Question 4 continues. . .

15-415/615 Homework 5, Page 12 of 12 2/27/2014, 1:30pm

(a) EXPLAIN ANALYZE SELECT name, title

FROM movies m , play_in p

WHERE m.mid = p.mid

ORDER BY name;

QUERY PLAN

--

Sort (cost=14224.61..14411.54 rows=74772 width=30)

(actual time=718.415..1002.984 rows=74772 loops=1)

Sort Key: p.name

Sort Method: external merge Disk: 2960kB

-> Nested Loop (cost=0.00..6379.73 rows=74772 width=30)

(actual time=0.014..78.539 rows=74772 loops=1)

-> Seq Scan on movies m (cost=0.00..48.80 rows=2680 width=20)

(actual time=0.005..0.507 rows=2680 loops=1)

-> Index Only Scan using play_in_pkey on play_in p

(cost=0.00..2.08 rows=28 width=18) (actual time=0.006..0.02

0 rows=28 loops=2680)

Index Cond: (mid = m.mid)

Heap Fetches: 74772

Total runtime: 1063.125 ms

(9 rows)

(b) 1. 14411.54

2. 1002.984ms

(c) Disk (Sort Method: external merge).

(d) CREATE INDEX mid_index_m on movies(mid);

(e) 3.

This happens because the nested loop algorithm is already taking advantage on
the existing index on mid on table movies (which is created by default, since mid

is the primary key). Thus, creating this index is redundant!

(f) CREATE INDEX mid_index_p on play_in(mid);

(g) 3.

As we saw before, the nested loop algorithm is already using one index to do the
join. Therefore, creating that second index does not make a difference.

Grading info: Due to non deterministic behavior of Postgres, full credit was given for

answers that are different from the solution. -1 for not having SQL statement

End of Homework 5

