
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo
Lecture#28: Modern Systems

CMU SCS

System Votes

Faloutsos/Pavlo CMU SCS 15-415/615 2

MongoDB 32
Google Spanner/F1 22
LinkedIn Espresso 16
Apache Cassandra 16
Facebook Scuba 16
Apache Hbase 14
VoltDB 10
Redis 10
Vertica 5

Cloudera Impala 5
DeepDB 2
SAP HANA 1
CockroachDB 1
SciDB 1
InfluxDB 1
Accumulo 1
Apache Trafodion 1

CMU SCS

MongoDB

• Document Data Model
– Think JSON, XML, Python dicts
– Not Microsoft Word documents

• Different terminology:
– Document → Tuple
– Collection → Table/Relation

4

CMU SCS

MongoDB

• A customer has orders and each order has
order items.

5

Customers

Orders

Order Items

R2(orderId, custId, …)

R1(custId, name, …)

R3(itemId, orderId, …)

⨝

⨝

CMU SCS

MongoDB

• A customer has orders and each order has
order items.

6

Customers

Orders

Order Items

Customer
Order
Order Item

Order Item
⋮

{ "custId" : 1234,
 "custName" : “Trump",
 "orders" : [
 { "orderId" : 10001,
 "orderItems" : [
 { "itemId" : "XXXX",
 "price" : 19.99 },
 { "itemId" : "YYYY",
 "price" : 29.99 }]
 },
 { "orderId" : 10050,
 "orderItems" : [
 { "itemId" : “ZZZZ",
 "price" : 49.99 }]
 }]
}

CMU SCS

MongoDB

• JSON-only query API
• Single-document atomicity.

– OLD: No server-side joins. Had to “pre-join”
collections by embedding related documents
inside of each other.

– NEW: Server-side joins (only left-outer equi)
• No cost-based query planner / optimizer.

7

CMU SCS

MongoDB

• Heterogeneous distributed components.
– Centralized query router.

• Master-slave replication.
• Auto-sharding:

– Define ‘partitioning’ attributes for each
collection (hash or range).

– When a shard gets too big, the DBMS
automatically splits the shard and rebalances.

8

CMU SCS

MongoDB

• Originally used mmap storage manager
– No buffer pool.
– Let the OS decide when to flush pages.
– Single lock per database.

9

CMU SCS

MongoDB

• Version 3 (2015) now supports pluggable
storage managers.
– WiredTiger from BerkeleyDB alumni.

http://cmudb.io/lectures2015-wiredtiger
– RocksDB from Facebook (“MongoRocks”)

http://cmudb.io/lectures2015-rocksdb

10

CMU SCS

LinkedIn Espresso

• System goals:
– Support distributed transactions across

documents
– Strong consistency to act as a single source-of-

truth for user data
– Integrates with the entire data ecosystem

• Replace legacy Oracle installations
– Started with InMail messaging service

CMU SCS 15-415/615 12

CMU SCS

LinkedIn Espresso

• Distributed document DBMS deployed in
production since 2012.

CMU SCS 15-415/615 13

CMU SCS

LinkedIn Espresso

14

Source: On Brewing Fresh Espresso: LinkedIn's Distributed Data Serving Platform, SIGMOD 2013

Cluster management
system in charge of
data partitioning

Pub/Sub message bus
that supports timeline
consistency.

CMU SCS

History

• Amazon publishes a paper in 2007 on the
Dynamo system.
– Eventually consistency key/value store
– Partitions based on consistent hashing

• People at Facebook start writing Cassandra
as a clone of Dynamo in 2008 for their
message service.
– Ended up not using the system and releasing the

source code.
 CMU SCS 15-415/615 16

CMU SCS

Apache Cassandra

• Borrows a lot of ideas from other systems:
– Consistent Hashing (Amazon Dynamo)
– Column-Family Data Model (Google BigTable)
– Log-structured Merge Trees

• Originally one of the leaders of the NoSQL
movement but now pushing “CQL”

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Consistent Hashing

18

0 1

1/2

F

E

D

C

B

A N=3

h(key2)

h(key1)

Source: Avinash Lakshman & Prashant Malik (Facebook)

CMU SCS

Column-Family Data Model

Source: Gary Dusbabek (Rackspace)
19

CMU SCS

LSM Storage Model

• The log is the database.
– Have to read log to reconstruct the

record for a read.
• MemTable: In-memory cache
• SSTables:

– Read-only portions of the log.
– Use indexes + Bloom filters to speed up reads

• See the RocksDB talk from this semester:
http://cmudb.io/lectures2015-rocksdb
 20

CMU SCS

Two-Phase Commit

Faloutsos/Pavlo CMU SCS 15-415/615 22

Node 1

Node 2

Application
Server

Commit
Request

Node 3

OK

OK

OK

OK

Phase1: Prepare

Phase2: Commit

Participant
Participant

C
oo

rd
in

at
or

CMU SCS

Paxos

• Consensus protocol where a coordinator
proposes an outcome (e.g., commit or abort)
and then the participants vote on whether
that outcome should succeed.

• Does not block if a majority of participants
are available and has provably minimal
message delays in the best case.
– First correct protocol that was provably

resilient in the face asynchronous networks
Faloutsos/Pavlo CMU SCS 15-415/615 24

CMU SCS

Paxos

Faloutsos/Pavlo CMU SCS 15-415/615 25

Node 1

Node 2 Application
Server

Commit
Request

Node 3

Pr
op

os
er

Node 4

A
cceptor

A
cceptor

A
cceptor

Propose

Commit

Agree

Agree

Agree
Accept

Accept

Accept

CMU SCS

Paxos

Faloutsos/Pavlo CMU SCS 15-415/615 26

Node 1

Node 2 Application
Server

Commit
Request

Node 3

Pr
op

os
er

Node 4

A
cceptor

A
cceptor

A
cceptor

Propose

Commit

Agree

Agree
Accept

Accept

X

CMU SCS

Paxos
Proposer Proposer Acceptors

Propose(n)
Agree(n)

Propose(n+1)

Commit(n)
Reject(n, n+1)

Commit(n+1)

Agree(n+1)

Accept(n+1)

CMU SCS

2PC vs. Paxos

• 2PC is a degenerate case of Paxos.
– Single coordinator.
– Only works if everybody is up.

• Use leases to determine who is allowed to
propose new updates to avoid continuous
rejection.

Faloutsos/Pavlo CMU SCS 15-415/615 28

CMU SCS

Google Spanner

• Google’s geo-replicated DBMS (>2011)
• Schematized, semi-relational data model.
• Concurrency Control:

– 2PL + T/O (Pessimistic)
– Externally consistent global write-transactions

with synchronous replication.
– Lock-free read-only transactions.

29

CMU SCS

Google Spanner

30

CREATE TABLE users {
 uid INT NOT NULL,
 email VARCHAR,
 PRIMARY KEY (uid)
};
CREATE TABLE albums {
 uid INT NOT NULL,
 aid INT NOT NULL,
 name VARCHAR,
 PRIMARY KEY (uid, aid)
} INTERLEAVE IN PARENT users
 ON DELETE CASCADE;

users(1001)
 ⤷albums(1001, 9990)
 ⤷albums(1001, 9991)
users(1002)
 ⤷albums(1002, 6631)
 ⤷albums(1002, 6634)

CMU SCS

Google Spanner

• Ensures ordering through globally unique
timestamps generated from atomic clocks
and GPS devices.

• Database is broken up into tablets:
– Use Paxos to elect leader in tablet group.
– Use 2PC for txns that span tablets.

• TrueTime API

31

CMU SCS

Google Spanner

Node 1 Node 2

NETWORK

Application
Server

Set A=2, B=9

Application
Server

A=1

Set A=0, B=7

B=8

T1 T2

32
Paxos or

2PC

CMU SCS

Google F1

• OCC engine built on top of Spanner.
– Read phase followed by a write phase
– In the read phase, F1 returns the last modified

timestamp with each row. No locks.
– The timestamp for a row is stored in a hidden

lock column. The client library returns these
timestamps to the F1 server

– If the timestamps differ from the current
timestamps at the time of commit the
transaction is aborted

33

