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_ _ Data mining - detailed outline
Carnegie Mellon Univ.

. e Problem
1 D:Il)t /gf Computzr Sflence #° Getting the data: Data Warehouses, DataCubes,
5-415/615 — DB Applications OLAP

* Supervised learning: decision trees
* Unsupervised learning
Data Warehousing / Data Mining — association rules

(R&G, ch 25 and 26)
C. Faloutsos and A. Pavlo
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Problem Data Ware-housing
Given: multiple data sources First step: collect the data, in a single place (=
Find: patterns (classifiers, rules, clusters, outliers...) Data Warehouse)
PGH How?
NY How often?
g sales(p-id, c-id, date, Sprice) «__ How about discrepancies / non-
homegeneities?
/
8 customers( c-id, age, income, ...)
SF
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Data Ware-housing Data Ware-housing
First step: collect the data, in a single place (= Step 2: collect counts. (DataCubes/OLAP)
Data Warehouse) Eg.:

How?  A: Triggers/Materialized views
How often? A: [Art!]

How about discrepancies / non-
homegeneities?  A: Wrappers/Mediators
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OLAP DataCubes
Problem: “is it true that shirts in large sizes sell ‘color’, ‘size’: DIMENSIONS
better in dark colors?” ‘count’: MEASURE
c/sS|S M L | TOT
c/S|s M L | TOT 0
ci-d -id  Size Color $ Red |20 3 5 28
sales P ’ Red [20 3 5 | 28 ‘ /\ ¢
C10 Shit L  Blue 30 Buels 3 8 | 14 s1ze \/ color Blue|3 3 8 | 14
—_— Grayl0 0 5 |5
~-€10-- Pants - XL ——-Red -~ 50- Graylo 0 5 |5 ray
) TOT|23 6 18 | 47
€20 Shit XL  White 20 TOT|23 6 18 | 47 color; size
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DataCubes

‘color’, ‘size’: DIMENSIONS
‘count’: MEASURE
Cc/S|S M

L
Red |20 3 5 28
8

size \ color Blue|3 3 14
/ Grayﬁ\u 5
TOT|23 6 18 @

color; size

Faloutsos/Pavlo CMU-SCS
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DataCubes

‘color’, ‘size’: DIMENSIONS
‘count’: MEASURE

% CMUSCS
DataCubes

‘color’, ‘size’: DIMENSIONS
‘count’: MEASURE

C/S|S M L TOT
3

/o\d) Red

size w3 3 8 |14

\M 0 0 5 |\s
TOT

23 6 18 | 47

color; size
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C/S|S M L | TOT
/o\(l) Red [20 3 5 |28
size color Blue|3 3 8 | 14
V\Gray 0 0 5 5
—
) TOT[23 6 183 47
color; size
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DataCubes
‘color’, ‘size’: DIMENSIONS
‘count’: MEASURE
C/S|s —M—~L | TOT
/o\(b Re¢’[20 3 5\| 28
size \ color flel3 3 8 | 14
/ Grajl0 0 5/|5s
) TOT|23 6 18 | 47
color; size
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‘color’, ‘size’: DIMENSIONS
‘count’: MEASURE

% CMUSCS
DataCubes

SQL query to generate DataCube:
* Naively (and painfully:)

select size, color, count(¥*)
from sales where p-id = “shirt’
group by size, color

select size, count(*)
from sales where p-id = “shirt’

group by size
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SQL query to generate DataCube:
» with ‘cube by’ keyword:

select size, color, count(*)

from sales

where p-id = ‘shirt’

cube by size, color
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C/S|S M L TOT

/o\d) Red [20 3 5 |28

size \ color Blue|3 3 8 | 14

/ Gray| 0 0 5 5

. TOT|[23 6 18| 47

color; size
DataCube
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DataCubes
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DataCubes

DataCube issues:

Q1: How to store them (and/or materialize
portions on demand)

Q2: Which operations to allow
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DataCube issues:

drill down, slice, dice
[More details: book by Han+Kamber]

Faloutsos/Pavlo CMU-SCS

Q1: How to store them (and/or materialize
portions on demand) A: ROLAP/MOLAP

Q2: Which operations to allow A: roll-up,

% CMU SCS

% CMUSCS
DataCubes

QI1: How to store a dataCube?
Al: Relational (R-OLAP)

, c/s|s ™M L | ToT
Color Size count
Red [20 3 5 28
all'‘all' 47 Blue[3 3 8 | 14
Blue 'all' 14 Gray 0 0 5 5
Blue M 3 TOT|23 6 18 | 47
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DataCubes
Q1: How to store a dataCube?
c/s|s M L | TOT
Red |20 3 5 | 28
Blue|3 3 8 | 14
Gray| 0 0 5 5
TOT|[23 6 18| 47
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DataCubes
Q1: How to store a dataCube?
A2: Multi-dimensional (M-OLAP)
A3: Hybrid (H-OLAP) C/S|S M L | TOT
Red 20 3 5 |28
Blue|3 3 8 | 14
Gray|0 0 5 5
TOT|[23 6 18| 47
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DataCubes

Pros/Cons:
ROLAP strong points: (DSS, Metacube)
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DataCubes

Pros/Cons:

ROLAP strong points: (DSS, Metacube)
* use existing RDBMS technology

* scale up better with dimensionality

Faloutsos/Pavlo CMU-SCS
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DataCubes

Pros/Cons:

MOLAP strong points: (EssBase/hyperion.com)
« faster indexing

(careful with: high-dimensionality; sparseness)

HOLAP: (MS SQL server OLAP services)
¢ detail data in ROLAP; summaries in MOLAP
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DataCubes

Q1: How to store a dataCube

qQ2: What operations should we support?

Faloutsos/Pavlo CMU-SCS
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DataCubes
Q2: What operations should we support?
c/sls M L | ToT
/\(I) Red 20 3 5 | 28
size \ color Blue|3 3 8 | 14
/ Gray|0 0 5 5
. TOT|[23 6 18 | 47
color; size
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DataCubes
Q2: What operations should we support?
Drill-down
c/sls M L |ToT
/o\(l) Red [20 3 5 | 28
size \ color Blue|3 3 8 | 14
\ / Gray/0 0 5 |5
. TOT|[23 6 18 | 47
color; size
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DataCubes
Q2: What operations should we support?
Roll-up
c/sls M L | TOT
/0\(1) Red [20 3 5 |28
size \ color Blue[3 3 8 | 14
\/ Gray[0 0 5 |5
TOT|23 6 18| 47
color; size
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DataCubes

Q2: What operations should we support?

Slice

¢

\V4

color; size

Faloutsos/Pavlo

c/sls m L | Tor
Red {20 | 3 5 28
Blue |3 3 8 14
Gray| 0 0 5 5
TOT|23 6 18 47

CMU-SCS
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Q2: What operations should we support?

Dice
c/s|ls M L |TOT
/\(I) Red [20 | 3 5 || 28
size color Blue|3 |3 8[| 14
\\/ Gray|0 0 5 5

TOT|23 6 18 | 47

color; size

Faloutsos/Pavlo CMU-SCS
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g CMUSCS
DataCubes

Q2: What operations should we support?
* Roll-up

* Drill-down

* Slice

* Dice

* (Pivot/rotate; drill-across; drill-through

* topN

* moving averages, etc)
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D/W - OLAP - Conclusions

* D/W: copy (summarized) data + analyze

* OLAP - concepts:
— DataCube
— R/M/H-OLAP servers
— ‘dimensions’; ‘measures’

Faloutsos/Pavlo CMU-SCS

% CMU SCS

Outline
¢ Problem
» Getting the data: Data Warehouses, DataCubes,
OLAP

#- Supervised learning: decision trees
* Unsupervised learning
— association rules
— (clustering)
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Decision trees - Problem

Age [Chol-level|Gender |... |CLASS-ID
30 (150 M +
| 2
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Decision trees

* Pictorially, we have

num. attr#2 -
(eg., chol-level)

num. attr#1 (eg., ‘age’)

CMU-SCS 34
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Decision trees

* and we want to label ‘?’

num. attr#2 ? -
(eg., chol-level) + +

num. attr#1 (eg., ‘age’)

CMU-SCS 35
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Decision trees

* so we build a decision tree:

num. attr#2 ? _
(eg., chol-level)
40 7

1?1(1)m. attr#1 (eg., ‘age’)

Faloutsos/Pavlo CMU-SCS
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Decision trees

* so we build a decision tree:

age<50
Y / N
+ |:| chol. <40
é/ ’
Faloutsos/Pavlo CMU-SCS -
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Outline

* Problem

* Getting the data: Data Warehouses, DataCubes,
OLAP

* Supervised learning: decision trees
— problem

q — approach

— scalability enhancements
* Unsupervised learning

— association rules

— (clustering)
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Decision trees
* Typically, two steps:

— tree building
— tree pruning (for over-training/over-fitting)

Faloutsos/Pavlo CMU-SCS
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Tree building

* How?
num. attr#2 }
(eg., chol-level) + 7
+, -7
+ 4 ;
num. attr#1 (eg., ‘age’)
Faloutsos/Pavlo CMU-SCS 40
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+ T3
+o -
T+

Tree building

* How?
* A: Partition, recursively - pseudocode:
Partition ( Dataset S)

if all points in S have same label

then return

evaluate splits along each attribute A
pick best split, to divide S into S1 and S2
Partition(S1); Partition(S2)
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Tree building

* QI: how to introduce splits along attribute
A.

1

* Q2: how to evaluate a split?
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— for num. attributes:

Tree building

* Q1: how to introduce splits along attribute A,
* Al:

+ T3

* binary split, or ++.|. -

 multiple split

— for categorical attributes:

» compute all subsets (expensive!), or
* use a greedy algo
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% CMUSCS
Tree building

* QI: how to introduce splits along attribute

A
q' Q2: how to evaluate a split?
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Tree building

* QI1: how to introduce splits along attribute
A.

1

‘- Q2: how to evaluate a split?

* A: by how close to uniform each subset is -
ie., we need a measure of uniformity:

% CMU SCS

entropy: H(p+, p-)

Tree building

Any other measure?

0 0.5

Faloutsos/Pavlo

CMU-SCS

Details

46

+ T3
T
+4 B}
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% o Details
Tree building
entropy: H(p., p.) ‘gini’ index: 1-p,2 - p 2
1 1
0 0
0 05
0 05 pt pt
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% CMU SCS

entropy: H(p,, p.)

Faloutsos/Pavlo

Tree building

Details

‘gini’ index: 1-p,% - p.2

(How about multiple labels?)

CMU-SCS

48
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E Details N
Tree building Tree building
Intuition: Thus, we choose the split that reduces
* entropy: #bits to encode the class label entropy/classification-error the most: Eg.:
* gini: classification error, if we randomly 1
guess ‘+’ with prob. p, num. attr#2 L
(eg., chol-level) + i+
., Fi- T
Tyl
num. attr#1 (eg., ‘age’)
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EE Details L
Tree building Tree pruning
. * What for?
* Before split: we need
(n, + 1) * H( p., p) = (7+6) * H(7/13, 6/13)
bits total, to encode all the class labels d OB
* After the split we need: num. attr#2 L é\
0 bits for the first half and (eg., chol-level) ++ + N
(2+6) * H(2/8, 6/8) bits  for the second half Tt + -
num. attr#1 (eg., ‘age’)
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Details

Tree pruning

Shortcut for scalability: DYNAMIC pruning:
* stop expanding the tree, if a node is
‘reasonably’ homogeneous
— ad hoc threshold [Agrawal+, vidb92]

— ( Minimum Description Language (MDL)
criterion (SLIQ) [Mehta+, edbt96] )

% CMU SCS Details

Tree pruning

* Q: How to do it?

* Al:use a ‘training’ and a ‘testing’ set -
prune nodes that improve classification in
the ‘testing’ set. (Drawbacks?)

* (A2: or, rely on MDL (= Minimum
Description Language) )

+
+,. t--
T+
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+ M3
il C
+ i,
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Details
Outline
* Problem
+ Getting the data: Data Warehouses, DataCubes,
OLAP
* Supervised learning: decision trees
— problem
— approach
— scalability enhancements
* Unsupervised learning
— association rules
— (clustering)
Faloutsos/Pavlo CMU-SCS 55

% CMU SCS Details

Scalability enhancements

* Interval Classifier [Agrawal+,vldb92]:
dynamic pruning

* SLIQ: dynamic pruning with MDL; vertical
partitioning of the file (but label column has
to fit in core)

* SPRINT: even more clever partitioning

[Age [Chol-level Gender |-.. |CLASSID

30 [150 M
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Conclusions for classifiers

* Classification through trees
* Building phase - splitting policies
* Pruning phase (to avoid over-fitting)

* For scalability:
— dynamic pruning

A >
— clever data partitioning b1
T E
+y -
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Outline

* Problem
* Getting the data: Data Warehouses, DataCubes,
OLAP
* Supervised learning: decision trees
— problem
— approach
— scalability enhancements
* Unsupervised learning
— association rules
— (clustering)
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Association rules - idea

[Agrawal+SIGMOD93]
+ Consider ‘market basket’ case:
(milk, bread)
(milk)
(milk, chocolate)
(milk, bread)
 Find ‘interesting things’, eg., rules of the form:
milk, bread -> chocolate | 90%
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Association rules - idea

In general, for a given rule
I, Ik, ...Im->1Ix|c
‘¢’ = ‘confidence’ (how often people by Ix, given
that they have bought [j, ... Im

‘s’ = support: how often people buy Ij, ... Im, Ix
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Association rules - idea Association rules - idea

Problem definition: Closely related concept: “large itemset”

* given T, Ik, ... Tm, Ix
— aset of ‘market baskets’ (=binary matrix, of N rows/
baskets and M columns/products)

— min-support ‘s’ and

— min-confidence ‘¢’
o find Observation: once we have a ‘large itemset’, we can
find out the qualifying rules easily (how?)

Thus, let’s focus on how to find ‘large itemsets’

is a ‘large itemset’, if it appears more than ‘min-
support’ times

— all the rules with higher support and confidence
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Association rules - idea Association rules - idea
Naive solution: scan database once; keep 2**|I| Naive solution: scan database once; keep 2**|I|
counters counters
Drawback? Drawback? 2**1000 is prohibitive...
Improvement? Improvement? scan the db |I| times, looking for 1-,

2-, etc itemsets

Eg., for |I[|=3 items only (A, B, C), we have
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Association rules - idea

@ @ first pass
2

100 200

min-sup:10
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Association rules - 1dea

CI
<
@ ®

100 200 2

min-sup:10
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first pass

Association rules - idea

Anti-monotonicity property:

if an itemset fails to be ‘large’, so will every superset
of it (hence all supersets can be pruned)

Sketch of the (famous!) ‘a-priori’ algorithm

Let L(i-1) be the set of large itemsets with i-/
elements

Let C(i) be the set of candidate itemsets (of size )
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Association rules - 1dea

Compute L(1), by scanning the database.
repeat, for i=2,3...,
‘join’ L(i-1) with itself, to generate C(i)
two itemset can be joined, if they agree on their first i-2 elements
prune the itemsets of C(i) (how?)

scan the db, finding the counts of the C(i) itemsets - set
this to be L(i)

unless L(i) is empty, repeat the loop
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Association rules - Conclusions

Association rules: a great tool to find patterns
* easy to understand its output
* fine-tuned algorithms exist

Faloutsos/Pavlo CMU-SCS
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Outline
* Problem
* Getting the data: Data Warehouses, DataCubes,
OLAP
* Supervised learning: decision trees
— problem
— approach

— scalability enhancements
* Unsupervised learning
— association rules

q — clustering

Faloutsos/Pavlo CMU-SCS
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Clustering

* Problem:
— given N points in V dimensions,
— group them
o]
°¢
o©
0O
o O
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Clustering

* Problem:
— given N points in V dimensions,
— group them

o
o
o
%
o o

Faloutsos/Pavlo CMU-SCS
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o
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Clustering

* Problem:
— given N points in V dimensions,
— group them °8

* MANY algorithms:
— K-means, X-means, BIRCH, OPTICS
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Clustering

Easiest to describe: k-means

User gives # clusters ‘k’

Start with ‘k’ random seeds

Assign each point to its nearest seed
Move seed towards center, and repeat

to+ :5 t\+§§ 3’ \)%
oo 68‘0 3&
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Overall Conclusions

+ Data Mining = ""Big Data’’ Analytics = Business
Intelligence:
— of high commercial, government and research interest

* DM = DB+ ML+ Stat+Sys

» Data warehousing / OLAP: to get the data

* Tree classifiers (SLIQ, SPRINT)

+ Association Rules - ‘a-priori’ algorithm

* clustering: k-means (& BIRCH, CURE, OPTICS)
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Reading material

Agrawal, R., T. Imielinski, A. Swami, ‘Mining Association

Rules between Sets of Items in Large Databases’,
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M. Mehta, R. Agrawal and J. Rissanen, "SLIQ: 4 Fast
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Additional references

» Agrawal, R., S. Ghosh, et al. (Aug. 23-27, 1992). 4n
Interval Classifier for Database Mining Applications.
VLDB Conf. Proc., Vancouver, BC, Canada.

+ Jiawei Han and Micheline Kamber, Data Mining , Morgan
Kaufman, 2001, chapters 2.2-2.3, 6.1-6.2, 7.3.5
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