
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo
Lecture#23: Concurrency Control – Part 2

 (R&G ch. 17)

CMU SCS

Concurrency Control Approaches

• Two-Phase Locking (2PL)
– Determine serializability order of conflicting

operations at runtime while txns execute.
• Timestamp Ordering (T/O)

– Determine serializability order of txns before
they execute.

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

Today's Class

• Basic Timestamp Ordering
• Optimistic Concurrency Control
• Multi-Version Concurrency Control
• Partition-based T/O

• The Phantom Problem
• Weaker Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 4

CMU SCS

Timestamp Allocation

• Each txn Ti is assigned a unique fixed
timestamp that is monotonically increasing.
– Let TS(Ti) be the timestamp allocated to txn Ti
– Different schemes assign timestamps at

different times during the txn.
• Multiple implementation strategies:

– System Clock.
– Logical Counter.
– Hybrid.

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

T/O Concurrency Control

• Use these timestamps to determine the
serializability order.

• If TS(Ti) < TS(Tj), then the DBMS must
ensure that the execution schedule is
equivalent to a serial schedule where Ti
appears before Tj.

Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

Basic T/O

• Txns read and write objects without locks.
• Every object X is tagged with timestamp of

the last txn that successfully did read/write:
– W-TS(X) – Write timestamp on X
– R-TS(X) – Read timestamp on X

• Check timestamps for every operation:
– If txn tries to access an object “from the

future”, it aborts and restarts.

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Basic T/O – Reads

• If TS(Ti) < W-TS(X), this violates
timestamp order of Ti w.r.t. writer of X.
– Abort Ti and restart it (with same TS? why?)

• Else:
– Allow Ti to read X.
– Update R-TS(X) to max(R-TS(X), TS(Ti))
– Have to make a local copy of X to ensure

repeatable reads for Ti.

Faloutsos/Pavlo CMU SCS 15-415/615 8

CMU SCS

Basic T/O – Writes

• If TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X)
– Abort and restart Ti.

• Else:
– Allow Ti to write X and update W-TS(X)
– Also have to make a local copy of X to ensure

repeatable reads for Ti.

Faloutsos/Pavlo CMU SCS 15-415/615 9

CMU SCS

Basic T/O – Example #1

Faloutsos/Pavlo CMU SCS 15-415/615 10

T
IM

E

BEGIN
R(B)

R(A)

COMMIT

T1 T2

BEGIN
R(B)
W(B)

R(A)
W(A)
COMMIT

Schedule Database

Object R-TS W-TS
A 0 0
B 0 0
- - -

TS(T1)=1 TS(T2)=2

1
1 2 2
2 2

No violations so both
txns are safe to commit.

CMU SCS

Basic T/O – Example #2

Faloutsos/Pavlo CMU SCS 15-415/615 11

T
IM

E

BEGIN
R(A)

W(A)
COMMIT

T1 T2

BEGIN
W(A)
COMMIT

Schedule Database

Object R-TS W-TS
A 0 0
- - -
- - -

1 2

Violation:
TS(T1) < W-TS(A)

T1 cannot overwrite
update by T2, so it

has to abort+restart.

CMU SCS

Basic T/O – Thomas Write Rule

• If TS(Ti) < R-TS(X):
– Abort and restart Ti.

• If TS(Ti) < W-TS(X):
– Thomas Write Rule: Ignore the write and

allow the txn to continue.
– This violates timestamp order of Ti

• Else:
– Allow Ti to write X and update W-TS(X)

Faloutsos/Pavlo CMU SCS 15-415/615 12

CMU SCS

Basic T/O – Thomas Write Rule

Faloutsos/Pavlo CMU SCS 15-415/615 13

T
IM

E

BEGIN
R(A)

W(A)
COMMIT

T1 T2

BEGIN
W(A)
COMMIT

Schedule Database

Object R-TS W-TS
A - -
- - -
- - -

1 2

Ignore the write and
allow T1 to commit.

We do not update
W-TS(A)

CMU SCS

Basic T/O

• Ensures conflict serializability if you don’t
use the Thomas Write Rule.

• No deadlocks because no txn ever waits.
• Possibility of starvation for long txns if

short txns keep causing conflicts.
• Permits schedules that are not recoverable.

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Recoverable Schedules

• Transactions commit only after all
transactions whose changes they read,
commit.

Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU SCS

Recoverability

Faloutsos/Pavlo CMU SCS 15-415/615 16

BEGIN
W(A)
 ⋮

T1 T2

BEGIN
R(A)
W(B)
COMMIT

Schedule

T2 is allowed to read the
writes of T1.

This is not recoverable
because we can’t restart T2.

T
IM

E

T1 aborts after T2 has
committed.

ABORT

CMU SCS

Basic T/O – Performance Issues

• High overhead from copying data to txn’s
workspace and from updating timestamps.

• Long running txns can get starved.
• Suffers from timestamp bottleneck.

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Today's Class

• Basic Timestamp Ordering
• Optimistic Concurrency Control
• Multi-Version Concurrency Control
• Partition-based T/O

• The Phantom Problem
• Weaker Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 18

CMU SCS

Optimistic Concurrency Control

• Assumption: Conflicts are rare
• Forcing txns to wait to acquire locks adds a

lot of overhead.
• Optimize for the no-conflict case.

Faloutsos/Pavlo CMU SCS 15-415/615 19

CMU SCS

OCC Phases

• Read: Track the read/write sets of txns and
store their writes in a private workspace.

• Validation: When a txn commits, check
whether it conflicts with other txns.

• Write: If validation succeeds, apply private
changes to database. Otherwise abort and
restart the txn.

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU SCS

OCC – Example

Faloutsos/Pavlo CMU SCS 15-415/615 21

T
IM

E

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE
COMMIT

T1 T2
BEGIN

READ
R(A)
VALIDATE
WRITE
COMMIT

Schedule Database
Object Value W-TS
A 123 0
- - -

T1 Workspace
Object Value W-TS

- - -

- - -

T2 Workspace
Object Value W-TS

- - -

- - -

456 2

123 0 A 123 0 A 456 ∞

TS(T2)=1

TS(T1)=2

CMU SCS

OCC – Validation Phase

• Need to guarantee only serializable
schedules are permitted.

• At validation, Ti checks other txns for RW
and WW conflicts and makes sure that all
conflicts go one way (from older txns to
younger txns).

Faloutsos/Pavlo CMU SCS 15-415/615 22

CMU SCS

OCC – Serial Validation

• Maintain global view of all active txns.
• Record read set and write set while txns are

running and write into private workspace.
• Execute Validation and Write phase inside

a protected critical section.

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

OCC – Validation Phase

• Each txn’s timestamp is assigned at the
beginning of the validation phase.

• Check the timestamp ordering of the
committing txn with all other running txns.

• If TS(Ti) < TS(Tj), then one of the
following three conditions must hold…

Faloutsos/Pavlo CMU SCS 15-415/615 24

CMU SCS

OCC – Validation #1

• Ti completes all three phases before Tj
begins.

Faloutsos/Pavlo CMU SCS 15-415/615 25

CMU SCS

OCC – Validation #1

Faloutsos/Pavlo CMU SCS 15-415/615 26

BEGIN
READ
VALIDATE
WRITE
COMMIT

T1 T2

BEGIN
READ
VALIDATE
WRITE
COMMIT

T
IM

E

CMU SCS

OCC – Validation #2

• Ti completes before Tj starts its Write
phase, and Ti does not write to any object
read by Tj.
– WriteSet(Ti) ∩ ReadSet(Tj) = Ø

Faloutsos/Pavlo CMU SCS 15-415/615 27

CMU SCS

OCC – Validation #2

Faloutsos/Pavlo CMU SCS 15-415/615 28

T
IM

E

BEGIN
READ
R(A)
W(A)

VALIDATE

T1 T2
BEGIN

READ
R(A)

VALIDATE
WRITE
COMMIT

Schedule Database
Object Value W-TS
A 123 0
- - -

T1 Workspace
Object Value W-TS

- - -

- - -

T2 Workspace
Object Value W-TS

- - -

- - -

123 0 A 123 0 A 456 ∞

T1 has to abort even
though T2 will never
write to the database.

CMU SCS

OCC – Validation #2

Faloutsos/Pavlo CMU SCS 15-415/615 29

T
IM

E

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

T1 T2
BEGIN

READ
R(A)
VALIDATE

WRITE
COMMIT

Schedule Database
Object Value W-TS
A 123 0
- - -

T1 Workspace
Object Value W-TS

- - -

- - -

T2 Workspace
Object Value W-TS

- - -

- - -

123 0 A 123 0 A 456 ∞

Safe to commit T1
because we know that

T2 will not write.

CMU SCS

OCC – Validation #3

• Ti completes its Read phase before Tj
completes its Read phase

• And Ti does not write to any object that is
either read or written by Tj:
– WriteSet(Ti) ∩ ReadSet(Tj) = Ø
– WriteSet(Ti) ∩ WriteSet(Tj) = Ø

Faloutsos/Pavlo CMU SCS 15-415/615 30

CMU SCS

OCC – Validation #3

Faloutsos/Pavlo CMU SCS 15-415/615 31

T
IM

E

BEGIN
READ
R(A)
W(A)

VALIDATE
WRITE
COMMIT

T1 T2
BEGIN

READ
R(B)

R(A)
VALIDATE
WRITE
COMMIT

Schedule Database
Object Value W-TS
A 123 0
B XYZ 0

T1 Workspace
Object Value W-TS

- - -

- - -

T2 Workspace
Object Value W-TS

- - -

- - -

123 0 A XYZ 0 B 456 ∞
456 1 A

456 1

Safe to commit T1
because T2 sees the DB
after T1 has executed.

TS(T1)=1

CMU SCS

OCC – Observations

• Q: When does OCC work well?
• A: When # of conflicts is low:

– All txns are read-only (ideal).
– Txns access disjoint subsets of data.

• If the database is large and the workload is
not skewed, then there is a low probability
of conflict, so again locking is wasteful.

Faloutsos/Pavlo CMU SCS 15-415/615 33

CMU SCS

OCC – Performance Issues

• High overhead for copying data locally.
• Validation/Write phase bottlenecks.
• Aborts are more wasteful because they only

occur after a txn has already executed.
• Suffers from timestamp allocation

bottleneck.

Faloutsos/Pavlo CMU SCS 15-415/615 34

CMU SCS

Today's Class

• Basic Timestamp Ordering
• Optimistic Concurrency Control
• Multi-Version Concurrency Control
• Partition-based T/O

• The Phantom Problem
• Weaker Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 35

CMU SCS

Multi-Version Concurrency Control

• Writes create new versions of objects
instead of in-place updates:
– Each successful write results in the creation of a

new version of the data item written.
• Use write timestamps to label versions.

– Let Xk denote the version of X where for a
given txn Ti: W-TS(Xk) ≤ TS(Ti)

Faloutsos/Pavlo CMU SCS 15-415/615 36

CMU SCS

MVCC – Reads

• Any read operation sees the latest version of
an object from right before that txn started.

• Every read request can be satisfied without
blocking the txn.

• If TS(Ti) > R-TS(Xk):
– Set R-TS(Xk) = TS(Ti)

Faloutsos/Pavlo CMU SCS 15-415/615 37

CMU SCS

MVCC – Writes

• If TS(Ti) < R-TS(Xk):
– Abort and restart Ti.

• If TS(Ti) = W-TS(Xk):
– Overwrite the contents of Xk.

• Else:
– Create a new version of Xk+1 and set its write

timestamp to TS(Ti).

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

MVCC – Example #1

Faloutsos/Pavlo CMU SCS 15-415/615 39

T
IM

E

BEGIN
R(A)
W(A)

R(A)
COMMIT

T1 T2

BEGIN
R(A)
W(A)

COMMIT

Schedule Database
Object Value R-TS W-TS
A0 123 0 0
- - - -
- - - -

1

T1 reads version A1 that it
wrote earlier.

1 1 456 A1 2

2 2 789 A2

TS(T1)=1 TS(T2)=2

CMU SCS

MVCC – Example #2

Faloutsos/Pavlo CMU SCS 15-415/615 40

T
IM

E

BEGIN
R(A)

W(A)

T1 T2

BEGIN
R(A)
COMMIT

Schedule Database
Object Value R-TS W-TS
A0 123 0 0
- - -

1 2

T1 is aborted because T2
“moved” time forward .

Violation:
TS(T1) < R-TS(A0)

CMU SCS

MVCC

• Can still incur cascading aborts because a
txn sees uncommitted versions from txns
that started before it did.

• Old versions of tuples accumulate.
• The DBMS needs a way to remove old

versions to reclaim storage space.

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

MVCC Implementations

• Store versions directly in main tables:
– Postgres, Firebird/Interbase

• Store versions in separate temp tables:
– MSFT SQL Server

• Only store a single master version:
– Oracle, MySQL

Faloutsos/Pavlo CMU SCS 15-415/615 42

CMU SCS

Garbage Collection – Postgres

• Never overwrites older versions.
• New tuples are appended to table.
• Deleted tuples are marked with a tombstone

and then left in place.
• Separate background threads (VACUUM) has

to scan tables to find tuples to remove.

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Garbage Collection – MySQL

• Only one “master” version for each tuple.
• Information about older versions are put in

temp rollback segment and then pruned
over time with a single thread (PURGE).

• Deleted tuples are left in place and the
space is reused.

Faloutsos/Pavlo CMU SCS 15-415/615 44

CMU SCS

MVCC – Performance Issues

• High abort overhead cost.
• Suffers from timestamp allocation

bottleneck.
• Garbage collection overhead.
• Requires stalls to ensure recoverability.

Faloutsos/Pavlo CMU SCS 15-415/615 45

CMU SCS

MVCC+2PL

• Combine the advantages of MVCC and 2PL
together in a single scheme.

• Use different concurrency control scheme
for read-only txns than for update txns.

Faloutsos/Pavlo CMU SCS 15-415/615 46

CMU SCS

MVCC+2PL – Reads

• Use MVCC for read-only txns so that they
never block on a writer

• Read-only txns are assigned a timestamp
when they enter the system.

• Any read operations see the latest version of
an object from right before that txn started.

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

MVCC+2PL – Writes

• Use strict 2PL to schedule the operations of
update txns:
– Read-only txns are essentially ignored.

• Txns never overwrite objects:
– Create a new copy for each write and set its

timestamp to ∞.
– Set the correct timestamp when txn commits.
– Only one txn can commit at a time.

Faloutsos/Pavlo CMU SCS 15-415/615 48

CMU SCS

MVCC+2PL – Performance Issues

• All the lock contention of 2PL.
• Suffers from timestamp allocation

bottleneck.

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU SCS

Today's Class

• Basic Timestamp Ordering
• Optimistic Concurrency Control
• Multi-Version Concurrency Control
• Partition-based T/O

• The Phantom Problem
• Weaker Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

Observation

• When a txn commits, all previous T/O
schemes check to see whether there is a
conflict with concurrent txns.

• This requires locks/latches/mutexes.
• If you have a lot of concurrent txns, then

this is slow even if the conflict rate is low.

Faloutsos/Pavlo CMU SCS 15-415/615 51

CMU SCS

Partition-based T/O

• Split the database up in disjoint subsets
called partitions (aka shards).

• Only check for conflicts between txns that
are running in the same partition.

Faloutsos/Pavlo CMU SCS 15-415/615 52

CMU SCS

Database Partitioning

Faloutsos/Pavlo CMU SCS 15-415/615 53

DISTRICT

CUSTOMER

ORDER_ITEM

ITEM

STOCK

WAREHOUSE

ORDERS

DISTRICT

CUSTOMER

ORDER_ITEM

STOCK

ORDERS ITEM

Replicated

WAREHOUSE

Schema Schema Tree

CMU SCS

Database Partitioning

Faloutsos/Pavlo CMU SCS 15-415/615 54

DISTRICT

CUSTOMER

ORDER_ITEM

STOCK

ORDERS

WAREHOUSE

ITEM ITEM ITEM ITEM ITEM

P2

P4

Replicated

P1

P1

P1

P1

P1

P1

P2

P2

P2

P2

P2

P2

P3

P3

P3

P3

P3

P3

P4

P4

P4

P4

P4

P4

P5

P5

P5

P5

P5

P5

P5

P3

P1

ITEM ITEM

ITEM ITEM

ITEM

ITEM

Schema Tree Partitions

CMU SCS

Partition-based T/O

• Txns are assigned timestamps based on
when they arrive at the DBMS.

• Partitions are protected by a single lock:
– Each txn is queued at the partitions it needs.
– The txn acquires a partition’s lock if it has the

lowest timestamp in that partition’s queue.
– The txn starts when it has all of the locks for all

the partitions that it will read/write.

Faloutsos/Pavlo CMU SCS 15-415/615 55

CMU SCS

Partition-based T/O – Reads

• Do not need to maintain multiple versions.
• Txns can read anything that they want at the

partitions that they have locked.
• If a txn tries to access a partition that it does

not have the lock, it is aborted + restarted.

Faloutsos/Pavlo CMU SCS 15-415/615 56

CMU SCS

Partition-based T/O – Writes

• All updates occur in place.
– Maintain a separate in-memory buffer to undo

changes if the txn aborts.
• If a txn tries to access a partition that it does

not have the lock, it is aborted + restarted.

Faloutsos/Pavlo CMU SCS 15-415/615 57

CMU SCS

Partition-based T/O –
Performance Issues

• Partition-based T/O protocol is very fast if:
– The DBMS knows what partitions the txn needs

before it starts.
– Most (if not all) txns only need to access a

single partition.
• Multi-partition txns causes partitions to be

idle while txn executes.

Faloutsos/Pavlo CMU SCS 15-415/615 58

CMU SCS

Today's Class

• Basic Timestamp Ordering
• Optimistic Concurrency Control
• Multi-Version Concurrency Control
• Partition-based T/O

• The Phantom Problem
• Weaker Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 59

CMU SCS

Dynamic Databases

• Recall that so far we have only dealing with
transactions that read and update data.

• But now if we have insertions, updates, and
deletions, we have new problems…

Faloutsos/Pavlo CMU SCS 15-415/615 60

CMU SCS

T
IM

E

The Phantom Problem

Faloutsos/Pavlo CMU SCS 15-415/615 61

BEGIN

COMMIT

T1 T2
Schedule

SELECT MAX(age)
 FROM sailors
 WHERE rating=1

BEGIN

COMMIT

INSERT INTO sailors
(age=96, rating=1)

SELECT MAX(age)
 FROM sailors
 WHERE rating=1

72

96

CMU SCS

How did this happen?

• Because T1 locked only existing records
and not ones under way!

• Conflict serializability on reads and writes
of individual items guarantees serializability
only if the set of objects is fixed.

• Solution?

Faloutsos/Pavlo CMU SCS 15-415/615 62

CMU SCS

Predicate Locking

• Lock records that satisfy a logical predicate:
– Example: rating=1.

• In general, predicate locking has a lot of
locking overhead.

• Index locking is a special case of predicate
locking that is potentially more efficient.

Faloutsos/Pavlo CMU SCS 15-415/615 63

CMU SCS

Index Locking

• If there is a dense index on the rating field
then the txn can lock index page containing
the data with rating=1.

• If there are no records with rating=1, the
txn must lock the index page where such a
data entry would be, if it existed.

Faloutsos/Pavlo CMU SCS 15-415/615 64

CMU SCS

Locking without an Index

• If there is no suitable index, then the txn
must obtain:
– A lock on every page in the table to prevent a

record’s rating from being changed to 1.
– The lock for the table itself to prevent records

with rating=1 from being added or deleted.

Faloutsos/Pavlo CMU SCS 15-415/615 65

CMU SCS

Today's Class

• Basic Timestamp Ordering
• Optimistic Concurrency Control
• Multi-Version Concurrency Control
• Partition-based T/O

• The Phantom Problem
• Weaker Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 66

CMU SCS

Weaker Levels of Consistency

• Serializability is useful because it allows
programmers to ignore concurrency issues.

• But enforcing it may allow too little
concurrency and limit performance.

• We may want to use a weaker level of
consistency to improve scalability.

Faloutsos/Pavlo CMU SCS 15-415/615 67

CMU SCS

Isolation Levels

• Controls the extent that a txn is exposed to
the actions of other concurrent txns.

• Provides for greater concurrency at the cost
of exposing txns to uncommitted changes:
– Dirty Reads
– Unrepeatable Reads
– Phantom Reads

Faloutsos/Pavlo CMU SCS 15-415/615 68

CMU SCS

Isolation Levels

• SERIALIZABLE: No phantoms, all reads
repeatable, no dirty reads.

• REPEATABLE READS: Phantoms may
happen.

• READ COMMITTED: Phantoms and
unrepeatable reads may happen.

• READ UNCOMMITTED: All of them
may happen.

Faloutsos/Pavlo CMU SCS 15-415/615 69

Is
ol

at
io

n
(H

ig
h→

L
ow

)

CMU SCS

Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 70

Dirty Read
Unrepeatable

Read Phantom

SERIALIZABLE No No No

REPEATABLE
READ No No Maybe

READ
COMMITTED No Maybe Maybe

READ
UNCOMMITTED Maybe Maybe Maybe

CMU SCS

Isolation Levels

• SERIALIZABLE: Obtain all locks first;
plus index locks, plus strict 2PL.

• REPEATABLE READS: Same as above,
but no index locks.

• READ COMMITTED: Same as above,
but S locks are released immediately.

• READ UNCOMMITTED: Same as above,
but allows dirty reads (no S locks).

Faloutsos/Pavlo CMU SCS 15-415/615 71

CMU SCS

SQL-92 Isolation Levels

• Default: Depends…
• Not all DBMS support all isolation levels in

all execution scenarios (e.g., replication).

Faloutsos/Pavlo CMU SCS 15-415/615 72

SET TRANSACTION ISOLATION LEVEL
 <isolation-level>;

CMU SCS

Isolation Levels

Faloutsos/Pavlo CMU SCS 15-415/615 73

Default Maximum
Actian Ingres 10.0/10S SERIALIZABLE SERIALIZABLE

Aerospike READ COMMITTED READ COMMITTED

Greenplum 4.1 READ COMMITTED SERIALIZABLE

MySQL 5.6 REPEATABLE READS SERIALIZABLE

MemSQL 1b READ COMMITTED READ COMMITTED

MS SQL Server 2012 READ COMMITTED SERIALIZABLE

Oracle 11g READ COMMITTED SNAPSHOT ISOLATION

Postgres 9.2.2 READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

ScaleDB 1.02 READ COMMITTED READ COMMITTED

VoltDB SERIALIZABLE SERIALIZABLE

Source: Peter Bailis, When is “ACID” ACID? Rarely. January 2013

CMU SCS

Access Modes

• You can also provide hints to the DBMS
about whether a txn will modify the
database.

• Only two possible modes:
– READ WRITE
– READ ONLY

Faloutsos/Pavlo CMU SCS 15-415/615 74

CMU SCS

SQL-92 Access Modes

• Default: READ WRITE

• Not all DBMSs will optimize execution if
you set a txn to in READ ONLY mode.

Faloutsos/Pavlo CMU SCS 15-415/615 75

SET TRANSACTION <access-mode>;

START TRANSACTION <access-mode>;

SQL-92

Postgres + MySQL 5.6

CMU SCS

Which CC Scheme is Best?

• Like many things in life, it depends…
– How skewed is the workload?
– Are the txns short or long?
– Is the workload mostly read-only?

Faloutsos/Pavlo CMU SCS 15-415/615 76

CMU SCS

Real Systems

Faloutsos/Pavlo CMU SCS 15-415/615 77

Scheme Released
Ingres Strict 2PL 1975

Informix Strict 2PL 1980

IBM DB2 Strict 2PL 1983

Oracle MVCC 1984*

Postgres MVCC 1985

MS SQL Server Strict 2PL or MVCC 1992*

MySQL (InnoDB) MVCC+2PL 2001

Aerospike OCC 2009

SAP HANA MVCC 2010

VoltDB Partition T/O 2010

MemSQL MVCC 2011

MS Hekaton MVCC+OCC 2013

CMU SCS

Summary

• Concurrency control is hard.

Faloutsos/Pavlo CMU SCS 15-415/615 78

