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ACID

Last Class

Introduction to Transactions

Concurrency Control
Crash Recovery

(R&G ch. 17)
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Last Class Today’s Class
 For Isolation property, serial execution of o Serializability

transactions is safe but slow

— We want to find schedules equivalent to serial
execution but allow interleaving.

* The way the DBMS does this is with its
concurrency control protocol.
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Deadlocks
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Two-Phase Locking

Lock Granularities
Locking in B+Trees
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Formal Properties of Schedules

« Serial Schedule: A schedule that does not
interleave the actions of different
transactions.

- Equivalent Schedules: For any database
state, the effect of executing the first
schedule is identical to the effect of
executing the second schedule.*

(*) no matter what the arithmetic operations are!
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Formal Properties of Schedules

» Serializable Schedule: A schedule that is
equivalent to some serial execution of the
transactions.

» Note: If each transaction preserves
consistency, every serializable schedule
preserves consistency.
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Example
T1 T2
BEGIN BEGIN
A=A+100 A=A*1.06
B=B-100 B=B*1.06
COMMIT COMMIT

e Consider two txns:
— T1 transfers $100 from B’s account to A’s
- T2 credits both accounts with 6% interest.

» Assume at first A and B each have $1000.
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Example

* Legal outcomes:
— A=1166, B=954 —$2120
— A=1160, B=960 —$2120

» The outcome depends on whether T1
executes before T2 or vice versa.
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Interleaving Example (Good)

Schedule Schedule
T1 T2 T1 T2
BEGIN BEGIN
A=A+100 A=A+100
BEGIN B=B-100
A=A*1.06 COMMIT

=810 = BEGIN
— A=A*1.06
<§=B*1 . OD B=B*1.06

COMMIT
=1166, B=954 A=1166, B=954

CMU SCS 15-415/615 9
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Interleaving Example (Bad)

Schedule
T1 T2

BEGIN

A=A+100
BEGIN _ _
A=A*1.06 A=1166, B=954
B=B*1.06
COMMIT or

B=B—100 _ B

COMMIT A=1160, B=960

A=1166, B=960

\[ The bank lost $6! ]
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Formal Properties of Schedules

» There are different levels of serializability:

— Conflict Serlallzabllltyﬁ All DBMSs Support this. ]
— View Serializability

This is harder but allows for
more concurrency.
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Conflicting Operations

* We need a formal notion of equivalence that
can be implemented efficiently...

— Base it on the notion of “conflicting” operations

« Definition: Two operations conflict if:
— They are by different transactions,

— They are on the same object and at least one of
them is a write.
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Conflict Serializable Schedules

» Two schedules are conflict equivalent iff:

— They involve the same actions of the same
transactions, and

— Every pair of conflicting actions is ordered the
same way.

e Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule.

Faloutsos/Pavlo CMU SCS 15-415/615
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Conflict Serializability Intuition

» A schedule S is conflict serializable if:

— You are able to transform S into a serial
schedule by swapping consecutive non-
conflicting operations of different transactions.
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Conflict Serializability Intuition

Schedule Serial Schedule
T1 T2 T1 T2

BEGIN BEGIN BEGIN

R(A) R(A)

W(A) W(A)

R(B) rR(A) R(B)

R(B) 4~ R(A) — |w(B)

R(B) R(A) - COMMIT BEGIN

W(B) W(A) R(A)

COMMIT W(A)
R(B) R(B)
W(B) W(B)
COMMIT COMMIT

Faloutsos/Pavlo
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Conflict Serializability Intuition

Schedule Serial Schedule
T1 T2 T1 T2
BEGIN BEGIN BEGIN
R(A) R(A)
R(A) W(A)
W(A) COMMIT BEGIN
W(A) 4"y E R(A)
COMMIT COMMIT W(A)
¢ COMMIT

Faloutsos/Pavlo
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Serializability

* Q: Are there any faster algorithms to figure
this out other than transposing operations?
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Dependency Graphs
 One node per txn.

» Edge from Ti to Tj if: a m

— An operation Oi of Ti conflicts with an
operation Oj of Tj and
— Oi appears earlier in the schedule than Oj.

 Also known as a “precedence graph”
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Dependency Graphs

* Theorem: A schedule is conflict
serializable if and only if its dependency
graph is acyclic.
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Example #1

Schedule Dependency Graph

T1 T2 A
BEGIN BEGIN

@‘@
W(A)\
L R 4 R(A

)
®. o
L Al 2 R(B)

W(B)

/connn The cycle in the graph

R(B) reveals the problem. The
W(B) output of T1 depends on
COMMIT T2, and vice-versa.
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Example #2 — Lost Update

Schedule Dependency Graph
T1 T2 A

BEGIN BEGIN
R(A)
A =Nl
R(A)
?:;f A= A-1 A
oW W(A)

COMMIT
W(A)

COMMIT

Faloutsos/Pavlo CMU SCS 15-415/615 21
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Example #3 — Threesome

Schedule Dependency Graph
T1 T2 T3
BEGIN B
—2)
W(A) BEGIN
1‘\* R(A)
W(A) A

BEGIN | COMMIT
(19
W(B)

R(B)""COMMIT

W(B)

COMMIT

Faloutsos/Pavlo CMU SCs 15-415/615 22
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Example #3 — Threesome

* Q: Is this equivalent to a serial execution?
o A: Yes(T2,T1,T3)

— Notice that T3 should go after T2, although it
starts before it!

Faloutsos/Pavlo CMU SCS 15-415/615 23
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Example #4 — Inconsistent Analysis

Schedule Dependency Graph

T1 T2 A
BEGIN BEGIN

R(A)
A = A-10
W(A)
\R(A) B
L P 4 sum = A
@ i
oWy

CecHo(sun))
R(B)

B = g+10

Is it possible to create a
schedule similar to this

W(B) that is “correct” but still
CoMMIT not conflict serializable?
Faloutsos/Pavlo CMU SCs 15-415/615 24
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Example #4 — Inconsistent Analysis

Schedule Dependency Graph
T1 T2 A
BEGIN BEGIN
R(A)
A = A-10
W(A)
\R(A)
if(A>0): cnt++ | B
R(B) l
if(B>0): cnt++ |
ECHO(cnt)
R e T T2 counts the number of
W(B) active accounts.
COMMIT
Faloutsos/Pavlo CMU SCS 15-415/615 25
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View Serializability

« Alternative (weaker) notion of
serializability.
 Schedules S1 and S2 are view equivalent if:

— If T1 reads initial value of A in S1, then T1 also
reads initial value of A in S2.

— If T1 reads value of A written by T2 in S1, then
T1 also reads value of A written by T2 in S2.

— If T1 writes final value of A in S1, then T1 also
writes final value of A in S2.

Faloutsos/Pavlo CMU SCs 15-415/615 26
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View Serializability

Schedule Dependency Graph
T1 T2 T3 A

BEGIN
W(A)
W(A)
COMMIT | COMMIT | COMMIT A @ A

Faloutsos/Pavlo CMU SCS 15-415/615 27
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View Serializability

Schedule Schedule
T1 T2 T3 T1 T2 T3
BEGIN BEGIN
R(A) BEGIN R(A)
W(A) W(A)
BEGIN view | | COMMIT
W(A) — BEGIN
G D= W(A)
COMMIT | COMMIT 'EOHH!(/\_ COMMIT
= ) | T
Allows all conflict < W(A) >
serializable schedules + CoHH
“plind writes”
Faloutsos/Pavlo CMU SCS 15-415/615 28
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Serializability Serializability
* View Serializability allows (slightly) more * In practice, Conflict Serializability is what
schedules than Conflict Serializability does. gets used, because it can be enforced
— But is difficult to enforce efficiently. efficiently.
* Neither definition allows all schedules that — To allow more concurrency, some special cases
you would consider “serializable”. get handled separately, such as for travel

. reservations, etc.
— This is because they don’t understand the

meanings of the operations or the data (recall
example #4)
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Schedules Today’s Class
( All Schedules . — )
View Serializable
« Two-Ph i
(Conflict Serializable wo-Phase Locking
e Deadlocks
» Lock Granularities
e Locking in B+Trees
- V,
- J
- Y,

Faloutsos/Pavlo 15-415/615 31 Faloutsos/Pavlo CMU SCS 15-415/615 32
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Executing with Locks

N

T1 T2 \m\Lock Manager
BEGIN
X-LOCK(A) »| Granted (T1—A)
R(A)

W(A)
UNROCK(A) »| Released (T1—A)
BEGIN
*a’ X-LOCK (A) g===| Granted (T2—A)
Jo W)

/ UNLOCK (A) == | Released (T2—A)
S-w0Q#(A) 2| Granted (T1—A)
R(A)

UNLOCK(A) > \Released (T1—-A) )
COMMIT COMMIT
CMU SCS 15-415/615 33
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Two-Phase Locking

* Phase 1: Growing

— Each txn requests the locks that it needs from
the DBMS’s lock manager.

— The lock manager grants/denies lock requests.
e Phase 2: Shrinking

— The txn is allowed to only release locks that it

previously acquired. It cannot acquire new
locks.

Faloutsos/Pavlo CMU SCs 15-415/615 34

‘g CMU SCS

# of Locks

» The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

Faloutsos/Pavlo

Two-Phase Locking

Transaction Lifetime

Growing Phase

Shrinking Phase

35
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Two-Phase Locking

» The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

Transaction Lifetime

[ 2PL Violation! |

# of Locks

Growing Phase Shrinking Phase

Faloutsos/Pavlo
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Executing with 2PL Two-Phase Locking
T1 T \m\,_ock Manager | * 2PL on its own IS _sgffic_ient to guarantee
BEGIN ; conflict serializability (i.e., schedules whose
X-LOCK(A)g 2| Granted (T1—A) . . iy -
R(A) precedence graph is acyclic), but, it is
W BEGIN subject to cascading aborts.
X-LOCK (A) === Denied!
RA) PN
UNLOCK(A) R »| Released (T1—A) P
COMMIT v o
W(A) < Granted (T2—A) =
UNLOCK (A) ====>| Released (T2—A) =
COMMIT S y
Growing Phase Shrinking Phase
Faloutsos/Pavlo CMU SCS 15-415/615 37 Faloutsos/Pavlo : TN ! 38
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2PL — Cascading Aborts 2PL Observations
Schedule
T1 T « There are schedules that are serializable but
BEGIN  [BECTN <" Thisis a permissible would not be allowed by 2PL.
X-LOCK(B) schedule in 2PL, but we e Locking limits concurrency.
mﬁi have to abort T2 too.

UNLOCK (A) May lead to deadlocks.

X-LOCK (A) May still have “dirty reads”

R(A) — . .
W(A) [ This is all wasted work! ] _ Solution: Strict 2PL

R(B)

G

Faloutsos/Pavlo CMU SCS 15-415/615 39 Faloutsos/Pavlo CMU SCs 15-415/615 40
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Strict Two-Phase Locking

» The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

 Allows only conflict serializable schedules,
but it is actually stronger than needed.

Release all Iocks\
at end of txn.

# of Locks

Growing Phase

Faloutsos/Pavlo

Shrinking Phase

41
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Strict Two-Phase Locking

» A schedule is strict if a value written by a
txn is not read or overwritten by other txns
until that txn finishes.

 Advantages:

— Recoverable.
— Do not require cascading aborts.

— Aborted txns can be undone by just restoring
original values of modified tuples.

Faloutsos/Pavlo CMU SCs 15-415/615 42
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Examples

e T1: Move $50 from Andy’s account to his
bookie’s account.

» T2: Compute the total amount in all
accounts and return it to the application.
 Legend:
—A — Andy’s account.
— B — The bookie’s account.

Faloutsos/Pavlo CMU SCS 15-415/615 43
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Non-2PL Example

T1 12

BEGIN BEGIN Initial State
X-LOCK(A) A=100. B=100
R(A) S-LOCK(A) )
A=A-50 -
W(A) &)
UNLOCK (A v
" R(A) T2 Output
UNLOCK (A)
S-LOCK(B) 150
X-LOCK(B)
. R(B)
o
R(B) (ECHO (A+B
B=B+50
W(B)
UNLOCK (B)
COMMIT .
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2PL Example Strict 2PL Example
BE Gl‘l BEG;II-IZ Initial State BEG;Il;l BEGI‘Z Initial State
X-LOCK(A) - - X-LOCK(A) = =
R(A) S-LOCK(A) A=100, B=100 R(A) S-LOCK(A) A=100, B=100
A=A-50 . A=A-50 .
W(A) 10 W(A) ©
X-LOCK(B) : X-LOCK(B) :
UNLOCK(A) | W T2 Output R(B) . T2 Output
o LOcK (B} 200 S - 200
R(B) : UNLOCK(A) v
B=B+50 n UNLOCK(B) |R(A)
W(B) : COMMIT S-LOCK(B)
UNLOCK(B) v R(B)
COMMIT R(B) ECHO (A+B)
UNLOCK(A) UNLOCK(A)
UNLOCK(B) UNLOCK(B)
ECHO (A+B) COMMIT
COMMIT 4 46
Strict Two-Phase Locking Schedules

» Txns hold all of their locks until commit.
» Good:

— Avoids “dirty reads” etc
 Bad:

— Limits concurrency even more

— And still may lead to deadlocks
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( All Schedules

@ View Serializable

Conflict Serializable

Avoid

Cascading

Abort

\_

~

Faloutsos/Pavlo
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Today’s Class

e Deadlocks
e Lock Granularities
* Locking in B+Trees

‘% CMU SCS

Two-Phase Locking

o 2PL seems to work well.
* Is that enough? Can we just go home now?
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Shit Just Got Real Deadlocks
T1 T2 81 ock Manager |  Deadlock: Cycle of transactions waiting for
|
BEGIN BEGIN ‘ locks to be released by each other.
X-LOCK(A) =| Granted (T1—A) i i
o S LocK(®) F==| Granted (T2—B) » Two ways of dealing with deadlocks:
Ff%‘ S-LOCK(A) t==>|Denied! — Deadlock prevention
X-LOCK (B) el »| Denied! — Deadlock detection
« Many systems just punt and use timeouts
a — What are the dangers with this approach?
v ; . J

Faloutsos/Pavlo
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Deadlock Detection

* The DBMS creates a waits-for graph:
— Nodes are transactions
— Edge from Ti to Tj if Ti is waiting for Tj to
release a lock
» The system periodically check for cycles in

% CMU SCS

Deadlock Detection

Schedule Waits-for Graph
T1 T2 T3

BEGIN BEGIN BEGIN
S-LOCK(A)

S-LOCK(D)

XNLOCK (B)
S-LOCK(C) @
S-LOCK(B) f

X-LOCK(

waits-for graph. X-LOCK (A)
‘g CcMU sCS . g cMu scs -
Deadlock Detection Deadlock Handling

» How often should we run the algorithm?
* How many txns are typically involved?
» What do we do when we find a deadlock?

Faloutsos/Pavlo CMU SCS 15-415/615 55

Waits-for Graph

e Q: What do we do?

e A: Select a “victim” and
rollback it back to break the
deadlock.

Faloutsos/Pavlo CMU SCs 15-415/615 56
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Deadlock Handling

Waits-for Graph
e Q: Which one do we choose? D )
 A: It depends... ‘
— By age (lowest timestamp) @
— By progress (least/most queries executed)
— By the # of items already locked
— By the # of txns that we have to rollback with it

* We also should consider the # of times a txn
has been restarted in the past.

Faloutsos/Pavlo CMU SCS 15-415/615 57
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Deadlock Handling

Waits-for Graph
e Q: How far do we rollback?
o A: ltdepends...

N
— Completely @

— Minimally (i.e., just enough to release locks)

Faloutsos/Pavlo CMU SCs 15-415/615 58
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Deadlock Prevention

* When a txn tries to acquire a lock that is held

by another txn, kill one of them to prevent a
deadlock.

» No waits-for graph or detection algorithm.

Faloutsos/Pavlo CMU SCS 15-415/615 59
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Deadlock Prevention

 Assign priorities based on timestamps:
— Older — higher priority (e.g., T1 > T2)
» Two different prevention policies:

— Wait-Die: If T1 has higher priority, T1 waits for
T2; otherwise T1 aborts (“old wait for young™)

— Wound-Wait: If T1 has higher priority, T2
aborts; otherwise T1 waits (“young wait for old”)

Faloutsos/Pavlo CMU SCs 15-415/615 60
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T1

Deadlock Prevention

T2

CMU sCs

Deadlock Prevention

* Lock Granularities
* Locking in B+Trees

Faloutsos/Pavlo
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» When we say that a txn acquires a “lock”,
what does that actually mean?

— On afield? Record? Page? Table?

o ldeally, each txn should obtain fewest
number of locks that is needed...

Faloutsos/Pavlo CMU SCS 15-415/615

BEGIN Wait-Die  Wound-Wait * Q: Why do these schemes guarantee no
gfff,'c“m | P Tlwaits  T2aborted deadlocks?

X-Locae™ « A: Only one “type” of direction allowed.
T1 T2 * Q: When a transaction restarts, what is its

R LOCK (A) Wait-Die  Wound-Wait (new) priority?
LN T2 aborted T2 waits « A: Its original timestamp. Why?

Faloutsos/Pavlo CMU SCS 15-415/615 61 Faloutsos/Pavlo CMU SCS 15-415/615 62
Today’s Class Lock Granularities
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% CMU SCS

o A: Multiple

Faloutsos/Pavlo

* Q: What locks should they obtain?

— Exclusive + Shared for leafs of lock tree.
— Special Intention locks for higher levels

CMU SCS 15-415/615

67

* Intention locks allow a higher level node to

check all descendent nodes.

 If anode is in an intention mode, then
explicit locking is being done at a lower
level in the tree.

Faloutsos/Pavlo CMU SCS 15-415/615

Database Lock Hierarchy Example
Database o T1: Get the balance of Andy’s shady off-
_ shore bank account.
~ Table1 [ Table 2 ] « T2: Increase all account balances by 1%.
Otupler | |2 Tuple2 « Q: What locks should they obtain?
Sart | [Batr2 | [P At
‘g CMU SCS g CMU SCS -
Example Intention Locks

be locked in S or X mode without having to

68
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P -

Intention Locks

—
A2

 Intention-Shared (1S): Indicates explicit
locking at a lower level with shared locks.

* Intention-Exclusive (IX): Indicates locking

at lower level with exclusive or shared locks.

Faloutsos/Pavlo CMU SCS 15-415/615 69

mmmmm
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Intention Locks

 Shared+Intention-Exclusive (SIX): The
subtree rooted by that node is locked
explicitly in shared mode and explicit
locking is being done at a lower level with
exclusive-mode locks.

Faloutsos/Pavlo CMU SCs 15-415/615 70
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Compatibility Matrix

T2 Wants
IS IX S SIX X
sl v v v v X
é IX| v v X X X
- siv X v X X
Fosixl v X X X X
Xl X X X X X

Faloutsos/Pavlo CMU SCS 15-415/615 71
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Multiple Granularity Protocol

)
m'a
SIX
A\ 2

O

CMU SCs 15-415/615 72

Weaker

Stronger

Faloutsos/Pavlo
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Locking Protocol

 Each txn obtains appropriate lock at highest
level of the database hierarchy.

* Toget Sor IS lock on a node, the txn must
hold at least IS on parent node.
— What if txn holds SIX on parent? S on parent?

* Toget X, IX, or SIX on a node, must hold
at least 1X on parent node.

Faloutsos/Pavlo CMU SCS 15-415/615 73
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Example — Two-level Hierarchy

Reac T2 Wants inR.
IS IX S SIX X
sl vCvDOv v X
% X v v X X X
a slv X v X X
© SIX| v X X X X
X X X X X X
Read Write
FalousosPavlo oMU SCS 154158635 "
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Example — Threesome

» Assume three txns execute at same time:
— T1: Scan R and update a few tuples.
— T2: Scan a portion of tuples in R.
— T3: Scan all tuples in R.

Table R

[ Tuple 1 l[ Tuple 2 ll Tuple n l

Faloutsos/Pavlo CMU SCS 15-415/615 75
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Example — Threesome

Scan R and update a few tigdas.all tuples in &an a portion of tuples in R.

Read Read ReddeatIrite

Faloutsos/Pavlo CMU SCs 15-415/615 76
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Example — Threesome

» T1: Getan SIX lock on R, then get X lock
on tuples that are updated.

* T2: Getan IS lock on R, and repeatedly get
an S lock on tuples of R.

e T3: Two choices:
— T3 gets an S lock on R.

— OR, T3 could behave like T2; can use lock
escalation to decide which.

Faloutsos/Pavlo CMU SCS 15-415/615 7
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Lock Escalation

 Lock escalation dynamically asks for
coarser-grained locks when too many low
level locks acquired.

» Reduces the number of requests that the
lock manager has to process.

Faloutsos/Pavlo CMU SCS 15-415/615

78

CMU sCSs

Multiple Lock Granularities

» Useful in practice as each txn only needs a
few locks.

* Intention locks help improve concurrency:
— Intention-Shared (1S): Intent to get S lock(s)
at finer granularity.

— Intention-Exclusive (1X): Intent to get X
lock(s) at finer granularity.

— Shared+Intention-Exclusive (SIX): Like S
and IX at the same time.

Faloutsos/Pavlo CMU SCS 15-415/615 79
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Today’s Class

e Locking in B+Trees

Faloutsos/Pavlo CMU SCS 15-415/615
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Locking in B+Trees

* Q: What about locking indexes?
» A: They are not quite like other database
elements so we can treat them differently:

— It’s okay to have non-serializable concurrent
access to an index as long as the accuracy of the
index is maintained.

Faloutsos/Pavlo CMU SCS 15-415/615 81
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Example

T1 wants to insert in H
T2 wants to insert in |
Q: Why not plain 2PL?
A: Because txns have

to hold on to their
locks for too long!

Faloutsos/Pavlo CMU SCs 15-415/615 82
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Lock Crabbing

» Improves concurrency for B+Trees.

 Get lock for parent; get lock for child;
release lock for parent if “safe”.

» Safe Nodes: Any node that won’t split or
merge when updated.
— Not full (on insertion)
— More than half-full (on deletion)

Faloutsos/Pavlo CMU SCS 15-415/615 83
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Lock Crabbing

 Search: Start at root and go down;
repeatedly,
— S lock child
— then unlock parent

 Insert/Delete: Start at root and go down,
obtaining X locks as needed. Once child is
locked, check if it is safe:
— If child is safe, release all locks on ancestors.

Faloutsos/Pavlo CMU SCs 15-415/615 84
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Example #1 — Search 38 Example #2 — Delete 38
|10 5] ||B 235 /B
It’s safe to release the \ We may need to , \
lock on A. S coalesce B, so we can’t
R e 211 13844 ]|C [6]] [ {releasethelockon 6-/@ 8|[44]|C
j \ / \ \ Wedknow that C V\r/]ill not
t ith F,
|3|4H6|9H10|11H12|13H20|22H23|31H35% Yiasa] ]| [3]4]{6]0fa0]11]{1d 105 2 T raiense Atn. KO n.
G H | D E G i T D E
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Example #3 — Insert 45 Example #4 — Insert 25
(][I _—wss|| [B /B
/ We know that if C needs \
to split, B has room so
6 [ ]| it's safe to release A. )@ e 6] [ [22] \ F |[38]l44]|C
/[ \ ] \
'3[ 4f6]9f10]11}12[13H20 : ) | 3]4f{eloHoluiliazl1320T77Kes] 28 Y3536 38|41 44| |
E has room so it won’t We need to split H so we H I D E
split, so we can need to keep the lock on 31] ]
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Problems

* Q: What was the first step that all of the
update examples did on the B+Tree?

e N\ [ N\ [
Delete 38 Insert 45 Insert 25
(X)) (X)) (X))
p2o]l A 2ol A 2ol [|A
\\ J \\ J \\

J/
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Problems

* Q: What was the first step that all of the
update examples did on the B+Tree?

» A: Locking the root every time becomes a
bottleneck with higher concurrency.

e Can we do better?

Faloutsos/Pavlo CMU SCS 15-415/615 90

g CcMU sCS
Better Tree Locking Algorithm

e Main ldea:

— Assume that the leaf is ‘safe’, and use S-locks
& crabbing to reach it, and verify.

— If leaf is not safe, then do previous algorithm.
* Rudolf Bayer, Mario Schkolnick:

Concurrency of Operations on B-Trees.

Acta Inf. 9: 1-21 (1977)
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Example #2 — Delete 38

|10 135 |

I [ [

13]4f6]9l10/11[12[13}H20]22}23[31} 35

D will not need to
cmy coalesce, so we’re safel

Faloutsos/Pavlo
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Example #4 — Insert 25

sl | I

[23||31|[F |[3s||44]/C

76es 25N a5 a6 {3e[41Haa] |
We need to spllt H so we H I D E

have to restartand re- | N
execute like before.

Fald

Vg cMU scs
Better Tree Locking Algorithm

e Search: Same as before.

e Insert/Delete:

— Set locks as if for search, get to leaf, and set X
lock on leaf.

— If leaf is not safe, release all locks, and restart
txn using previous Insert/Delete protocol.
o Gambles that only leaf node will be
modified; if not, S locks set on the first pass
to leaf are wasteful.

Faloutsos/Pavlo CMU SCs 15-415/615 94

CMU sCSs

Additional Points

* Q: Which order to release locks in multiple-
granularity locking?

* A: From the bottom up

* Q: Which order to release locks in tree-
locking?

» A: As early as possible to maximize
concurrency.
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Locking in Practice

* You typically don’t set locks manually.

» Sometimes you will need to provide the
DBMS with hints to help it to improve
concurrency.

o Also useful for doing major changes.
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LOCK TABLE SELECT...FOR UPDATE
Postgres
LOCK TABLE <table> IN <mode> MODE; SELECT * FROM <table>
WHERE <qualification> FOR UPDATE;

MySQL
LOCK TABLE <table> <mode>;

» Perform a select and then sets an exclusive
lock on the matching tuples.

e Can also set shared locks:

— Postgres: FOR SHARE
- MySQL: LOCK IN SHARE MODE

» Explicitly locks a table.

* Not part of the SQL standard.
— Postgres Modes: SHARE, EXCLUSIVE
— MySQL Modes: READ, WRITE
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Concurrency Control Summary

» Conflict Serializability <« Correctness

» Automatically correct interleavings:
— Locks + protocol (2PL, S2PL ...)
— Deadlock detection + handling
— Deadlock prevention
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