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Last Class 

• Introduction to Transactions 
• ACID 
• Concurrency Control 
• Crash Recovery 

Faloutsos/Pavlo CMU SCS 15-415/615 2 
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Last Class 

• For Isolation property, serial execution of 
transactions is safe but slow 
– We want to find schedules equivalent to serial 

execution but allow interleaving. 
• The way the DBMS does this is with its 

concurrency control protocol. 
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Today’s Class 

• Serializability 
• Two-Phase Locking 
• Deadlocks 
• Lock Granularities 
• Locking in B+Trees 
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Formal Properties of Schedules 

• Serial Schedule: A schedule that does not 
interleave the actions of different 
transactions. 

• Equivalent Schedules: For any database 
state, the effect of executing the first 
schedule is identical to the effect of 
executing the second schedule.* 
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(*) no matter what the arithmetic operations are! 
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Formal Properties of Schedules 

• Serializable Schedule: A schedule that is 
equivalent to some serial execution of the 
transactions. 

• Note: If each transaction preserves 
consistency, every serializable schedule 
preserves consistency. 
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Example 

 
 
 

• Consider two txns: 
– T1 transfers $100 from B’s account to A’s 
– T2 credits both accounts with 6% interest. 

• Assume at first A and B each have $1000.  
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BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 
BEGIN 
A=A*1.06   
B=B*1.06 
COMMIT 

T2 

CMU SCS 

Example 

• Legal outcomes: 
– A=1166, B=954 
– A=1160, B=960 

• The outcome depends on whether T1 
executes before T2 or vice versa. 
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→$2120 
→$2120 
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Interleaving Example (Good) 
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≡ 

A=1166, B=954 A=1166, B=954 

T
IM

E
 

BEGIN 
A=A+100 
 
 
B=B–100 
COMMIT 

T1 T2 
 
 
BEGIN 
A=A*1.06 
 
 
B=B*1.06 
COMMIT 

BEGIN 
A=A+100 
B=B–100 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

Schedule Schedule 
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Interleaving Example (Bad) 
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≢ 

A=1166, B=960 

T
IM

E
 A=1166, B=954 

or 
A=1160, B=960 

BEGIN 
A=A+100 
 
 
 
 
B=B–100 
COMMIT 

T1 T2 
 
 
BEGIN 
A=A*1.06 
B=B*1.06 
COMMIT 

Schedule 

The bank lost $6! 
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Formal Properties of Schedules 

• There are different levels of serializability: 
– Conflict Serializability 
– View Serializability 
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All DBMSs support this. 

This is harder but allows for 
more concurrency. 
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Conflicting Operations 

• We need a formal notion of equivalence that 
can be implemented efficiently… 
– Base it on the notion of “conflicting” operations 

 
• Definition: Two operations conflict if: 

– They are by different transactions,  
– They are on the same object and at least one of 

them is a write. 
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Conflict Serializable Schedules 

• Two schedules are conflict equivalent iff: 
– They involve the same actions of the same 

transactions, and 
– Every pair of conflicting actions is ordered the 

same way. 
• Schedule S is conflict serializable if: 

– S is conflict equivalent to some serial schedule. 
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Conflict Serializability Intuition 

• A schedule S is conflict serializable if: 
– You are able to transform S into a serial 

schedule by swapping consecutive non-
conflicting operations of different transactions. 
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Conflict Serializability Intuition 
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≡ 

T
IM

E
 

BEGIN 
R(A) 
W(A) 
 
 
 
 
COMMIT 

T1 T2 
BEGIN 
 
 
 
 
 
 
 
R(B) 
W(B) 
COMMIT 

BEGIN 
R(A) 
W(A) 
R(B) 
W(B) 
COMMIT 

T1 T2 
 
 
 
 
 
BEGIN 
R(A) 
W(A) 
R(B) 
W(B) 
COMMIT 

Schedule Serial Schedule 

R(B) W(A) 

R(A) 
R(B) W(A) R(A) 
R(B) 

W(B) 
W(B) 

W(A) 
R(A) 

W(B) 

CMU SCS 

Conflict Serializability Intuition 
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T
IM

E
 

BEGIN 
R(A) 
 
 
W(A) 
COMMIT 

T1 T2 
BEGIN 
 
R(A) 
W(A) 
 
COMMIT 

BEGIN 
R(A) 
W(A) 
COMMIT 

T1 T2 
 
 
 
BEGIN 
R(A) 
W(A) 
COMMIT 

Schedule Serial Schedule 

≢ 
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Serializability 

• Q: Are there any faster algorithms to figure 
this out other than transposing operations? 
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Dependency Graphs 

• One node per txn. 
• Edge from Ti to Tj if: 

– An operation Oi of Ti conflicts with an 
operation Oj of Tj and 

– Oi appears earlier in the schedule than Oj. 
• Also known as a “precedence graph” 
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Ti Tj 

CMU SCS 

Dependency Graphs 

• Theorem: A schedule is conflict 
serializable if and only if its dependency 
graph is acyclic. 
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Example #1 
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T
IM

E
 

BEGIN 
R(A) 
W(A) 
 
 
 
 
 
R(B) 
W(B) 
COMMIT 

T1 T2 
BEGIN 
 
 
R(A) 
W(A) 
R(B) 
W(B) 
COMMIT 

Schedule 

T1 T2 

A 

B 

Dependency Graph 

The cycle in the graph 
reveals the problem. The 
output of T1 depends on 

T2, and vice-versa. 
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Example #2 – Lost Update 
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T
IM

E
 

BEGIN 
R(A) 
A = A-1 
 
 
 
 
W(A) 
COMMIT 

T1 T2 
BEGIN 
 
 
R(A) 
A = A-1 
W(A) 
COMMIT 

Schedule 

T1 T2 

A 

A 

Dependency Graph 

CMU SCS 

Example #3 – Threesome 
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T
IM

E
 

BEGIN 
R(A) 
W(A) 
 
 
 
 
 
R(B) 
W(B) 
COMMIT 

T1 T2 
 
 
 
 
 
BEGIN 
R(B) 
W(B) 
COMMIT 

Schedule 

T1 T2 

Dependency Graph 
T3 

 
 
BEGIN 
R(A) 
W(A) 
COMMIT 

T3 

B 

A 

CMU SCS 

Example #3 – Threesome 

• Q: Is this equivalent to a serial execution? 
• A:  Yes (T2, T1, T3) 

– Notice that T3 should go after T2, although it 
starts before it! 
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Example #4 – Inconsistent Analysis 
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T
IM

E
 

BEGIN 
R(A) 
A = A-10 
W(A) 
 
 
 
 
 
R(B) 
B = B+10 
W(B) 
COMMIT 

T1 T2 
BEGIN 
 
 
 
R(A) 
sum = A 
R(B) 
sum += B 
ECHO(sum) 
COMMIT 

Schedule 

T1 T2 

A 

B 

Dependency Graph 

Is it possible to create a 
schedule similar to this 
that is “correct” but still 
not conflict serializable? 
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Example #4 – Inconsistent Analysis 
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T
IM

E
 

BEGIN 
R(A) 
A = A-10 
W(A) 
 
 
 
 
 
R(B) 
B = B+10 
W(B) 
COMMIT 

T1 T2 
BEGIN 
 
 
 
R(A) 
sum = A 
R(B) 
sum += B 
ECHO(cnt) 
COMMIT 

Schedule 

T1 T2 

A 

B 

Dependency Graph 

T2 counts the number of 
active accounts. 

if(A>0): cnt++ 

if(B>0): cnt++ 

CMU SCS 

View Serializability 

• Alternative (weaker) notion of 
serializability. 

• Schedules S1 and S2 are view equivalent if: 
– If T1 reads initial value of A in S1, then T1 also 

reads initial value of A in S2. 
– If T1 reads value of A written by T2 in S1, then 

T1 also reads value of A written by T2 in S2. 
– If T1 writes final value of A in S1, then T1 also 

writes final value of A in S2. 
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View Serializability 
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T
IM

E
 

BEGIN 
R(A) 
 
 
W(A) 
 
COMMIT 

T1 T2 
 
BEGIN 
W(A) 
 
 
 
COMMIT 

Schedule 
T3 

 
 
 
BEGIN 
 
W(A) 
COMMIT 

Dependency Graph 

A 

A 

A A A 

T1 T2 

T3 

CMU SCS 

View Serializability 
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T
IM

E
 

BEGIN 
R(A) 
 
 
W(A) 
 
COMMIT 

T1 T2 
 
BEGIN 
W(A) 
 
 
 
COMMIT 

Schedule 
T3 

 
 
 
BEGIN 
 
W(A) 
COMMIT 

BEGIN 
R(A) 
W(A) 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
W(A) 
COMMIT 

Schedule 
T3 

 
 
 
 
 
 
 
BEGIN 
W(A) 
COMMIT 

Allows all conflict 
serializable schedules + 

“blind writes” 

≡ VIEW 
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Serializability 

• View Serializability allows (slightly) more 
schedules than Conflict Serializability does. 
– But is difficult to enforce efficiently. 

• Neither definition allows all schedules that 
you would consider “serializable”. 
– This is because they don’t understand the 

meanings of the operations or the data (recall 
example #4) 
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Serializability 

• In practice, Conflict Serializability is what 
gets used, because it can be enforced 
efficiently. 
– To allow more concurrency, some special cases 

get handled separately, such as for travel 
reservations, etc. 
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All Schedules 

Schedules 
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View Serializable 

Conflict Serializable 

Serial 

CMU SCS 

Today’s Class 

• Serializability 
• Two-Phase Locking 
• Deadlocks 
• Lock Granularities 
• Locking in B+Trees 
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BEGIN 
X-LOCK(A) 
R(A) 
W(A) 
UNLOCK(A) 
 
 
 
 
S-LOCK(A) 
R(A) 
UNLOCK(A) 
COMMIT 

T1 T2 
 
 
 
 
 
BEGIN 
X-LOCK(A) 
W(A) 
UNLOCK(A) 
 
 
 
COMMIT 

Executing with Locks 
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T
IM

E
 

Lock Manager 

Granted (T1→A) 

Granted (T2→A) 

Released (T1→A) 

Released (T2→A) 
Granted (T1→A) 

Released (T1→A) 

CMU SCS 

Two-Phase Locking 

• Phase 1: Growing 
– Each txn requests the locks that it needs from 

the DBMS’s lock manager. 
– The lock manager grants/denies lock requests. 

• Phase 2: Shrinking 
– The txn is allowed to only release locks that it 

previously acquired. It cannot acquire new 
locks. 
 

Faloutsos/Pavlo CMU SCS 15-415/615 34 

CMU SCS 

Two-Phase Locking 

• The txn is not allowed to acquire/upgrade 
locks after the growing phase finishes. 
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Growing Phase Shrinking Phase 

TIME 

Transaction Lifetime 

CMU SCS 

Two-Phase Locking 

• The txn is not allowed to acquire/upgrade 
locks after the growing phase finishes. 
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Growing Phase Shrinking Phase 

TIME 

Transaction Lifetime 

2PL Violation! 
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BEGIN 
X-LOCK(A) 
R(A) 
W(A) 
 
 
R(A) 
UNLOCK(A) 
COMMIT 

T1 T2 
 
 
 
 
BEGIN 
X-LOCK(A) 
 
 
 
W(A) 
UNLOCK(A) 
COMMIT 

Executing with 2PL 
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T
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E
 

Lock Manager 

Granted (T1→A) 

Denied! 

Released (T2→A) 

Released (T1→A) 

Granted (T2→A) 

CMU SCS 

Two-Phase Locking 

• 2PL on its own is sufficient to guarantee 
conflict serializability (i.e., schedules whose 
precedence graph is acyclic), but, it is 
subject to cascading aborts. 
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Growing Phase Shrinking Phase 

TIME 

CMU SCS 

2PL – Cascading Aborts 
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T
IM

E
 

BEGIN 
X-LOCK(A) 
X-LOCK(B) 
R(A) 
W(A) 
UNLOCK(A) 
 
 
 
R(B) 
W(B) 
ABORT 

T1 T2 
BEGIN 
 
 
 
 
 
X-LOCK(A) 
R(A) 
W(A) 
  ⋮ 
 
 
 
 
 
 

Schedule 

This is a permissible 
schedule in 2PL, but we 

have to abort T2 too. 

This is all wasted work! 

CMU SCS 

2PL Observations 

• There are schedules that are serializable but 
would not be allowed by 2PL. 

• Locking limits concurrency. 
• May lead to deadlocks. 
• May still have “dirty reads”  

– Solution: Strict 2PL 
 

Faloutsos/Pavlo CMU SCS 15-415/615 40 



CMU SCS 

Strict Two-Phase Locking 

• The txn is not allowed to acquire/upgrade 
locks after the growing phase finishes. 

• Allows only conflict serializable schedules, 
but it is actually stronger than needed. 
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Growing Phase Shrinking Phase 

TIME 

Release all locks 
at end of txn. 

CMU SCS 

Strict Two-Phase Locking 

• A schedule is strict if a value written by a 
txn is not read or overwritten by other txns 
until that txn finishes. 

• Advantages: 
– Recoverable. 
– Do not require cascading aborts. 
– Aborted txns can be undone by just restoring 

original values of modified tuples. 
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Examples 

• T1: Move $50 from Andy’s account to his 
bookie’s account. 

• T2: Compute the total amount in all 
accounts and return it to the application. 

• Legend: 
– A → Andy’s account. 
– B → The bookie’s account. 
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Non-2PL Example 

44 

T
IM

E
 

A=100, B=100 
Initial State 

150 
T2 Output 

BEGIN 
X-LOCK(A) 
R(A) 
A=A-50 
W(A) 
UNLOCK(A) 
 
 
 
X-LOCK(B) 
 
 
R(B) 
B=B+50 
W(B) 
UNLOCK(B) 
COMMIT 

T1 T2 
BEGIN 
 
S-LOCK(A) 
 
 
 
R(A) 
UNLOCK(A) 
S-LOCK(B) 
 
R(B) 
UNLOCK(B) 
ECHO(A+B) 
COMMIT 



CMU SCS 

2PL Example 

45 

T
IM

E
 

BEGIN 
X-LOCK(A) 
R(A) 
A=A-50 
W(A) 
X-LOCK(B) 
UNLOCK(A) 
 
 
R(B) 
B=B+50 
W(B) 
UNLOCK(B) 
COMMIT 

T1 T2 
BEGIN 
 
S-LOCK(A) 
 
 
 
 
R(A) 
S-LOCK(B) 
 
 
 
 
R(B) 
UNLOCK(A) 
UNLOCK(B) 
ECHO(A+B) 
COMMIT 

A=100, B=100 
Initial State 

200 
T2 Output 

CMU SCS 

Strict 2PL Example 

46 

T
IM

E
 

BEGIN 
X-LOCK(A) 
R(A) 
A=A-50 
W(A) 
X-LOCK(B) 
R(B) 
B=B+50 
W(B) 
UNLOCK(A) 
UNLOCK(B) 
COMMIT 

T1 T2 
BEGIN 
 
S-LOCK(A) 
 
 
 
 
 
 
 
R(A) 
S-LOCK(B) 
R(B) 
ECHO(A+B) 
UNLOCK(A) 
UNLOCK(B) 
COMMIT 

A=100, B=100 
Initial State 

200 
T2 Output 

CMU SCS 

Strict Two-Phase Locking 

• Txns hold all of their locks until commit. 
• Good: 

– Avoids “dirty reads” etc 
• Bad: 

– Limits concurrency even more 
– And still may lead to deadlocks 
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All Schedules 

Avoid 
Cascading 
Abort 

Schedules 

Faloutsos/Pavlo 15-415/615 48 

View Serializable 

Conflict Serializable 

Strict 2PL 

Serial 
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Today’s Class 

• Serializability 
• Two-Phase Locking 
• Deadlocks 
• Lock Granularities 
• Locking in B+Trees 
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Two-Phase Locking 

• 2PL seems to work well. 
• Is that enough? Can we just go home now? 
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BEGIN 
X-LOCK(A) 
 
 
 
R(A) 
X-LOCK(B) 
 
 

T1 T2 
BEGIN 
 
S-LOCK(B) 
R(B) 
S-LOCK(A) 
 

Shit Just Got Real 
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T
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E
 

Lock Manager 

Granted (T1→A) 

Denied! 

Granted (T2→B) 

Denied! 

CMU SCS 

Deadlocks 

• Deadlock: Cycle of transactions waiting for 
locks to be released by each other. 

• Two ways of dealing with deadlocks: 
– Deadlock prevention 
– Deadlock detection 

• Many systems just punt and use timeouts 
– What are the dangers with this approach? 
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Deadlock Detection 

• The DBMS creates a waits-for graph: 
– Nodes are transactions 
– Edge from Ti to Tj if Ti is waiting for Tj to 

release a lock 
• The system periodically check for cycles in 

waits-for graph. 
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Deadlock Detection 

Faloutsos/Pavlo CMU SCS 15-415/615 54 

T1 T2 

Waits-for Graph 

T3 

T
IM

E
 

BEGIN 
S-LOCK(A) 
S-LOCK(D) 
 
 
S-LOCK(B) 

T1 T2 
BEGIN 
 
 
X-LOCK(B) 
 
 
 
X-LOCK(C) 

Schedule 
T3 

BEGIN 
 
 
 
S-LOCK(C) 
 
 
 
X-LOCK(A) 

CMU SCS 

Deadlock Detection 

• How often should we run the algorithm? 
• How many txns are typically involved? 
• What do we do when we find a deadlock? 
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Deadlock Handling 

• Q: What do we do? 
• A: Select a “victim” and 

rollback it back to break the 
deadlock.  

Faloutsos/Pavlo CMU SCS 15-415/615 56 



CMU SCS 

Deadlock Handling 

• Q: Which one do we choose? 
• A: It depends… 

– By age (lowest timestamp) 
– By progress (least/most queries executed) 
– By the # of items already locked 
– By the # of txns that we have to rollback with it 

• We also should consider the # of times a txn 
has been restarted in the past. 
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CMU SCS 

Deadlock Handling 

• Q: How far do we rollback? 
• A: It depends… 

– Completely 
– Minimally (i.e., just enough to release locks) 
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Deadlock Prevention 

• When a txn tries to acquire a lock that is held 
by another txn, kill one of them to prevent a 
deadlock. 

• No waits-for graph or detection algorithm. 
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Deadlock Prevention 

• Assign priorities based on timestamps: 
– Older → higher priority (e.g., T1 > T2) 

• Two different prevention policies: 
– Wait-Die: If T1 has higher priority, T1 waits for 

T2; otherwise T1 aborts (“old wait for young”) 
– Wound-Wait: If T1 has higher priority, T2 

aborts; otherwise T1 waits (“young wait for old”) 
 

Faloutsos/Pavlo CMU SCS 15-415/615 60 



CMU SCS 

Deadlock Prevention 
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BEGIN 
 
 
X-LOCK(A) 
   ⋮ 
 

T1 T2 
 
BEGIN 
X-LOCK(A) 
   ⋮ 

BEGIN 
X-LOCK(A) 
   ⋮ 
 

T1 T2 
 
 
BEGIN 
X-LOCK(A) 
   ⋮ 

Wait-Die 
T1 waits 

Wound-Wait 
T2 aborted 

Wait-Die 
T2 aborted 

Wound-Wait 
T2 waits 

CMU SCS 

Deadlock Prevention 

• Q: Why do these schemes guarantee no 
deadlocks? 

• A: Only one “type” of direction allowed. 
 

• Q: When a transaction restarts, what is its 
(new) priority? 

• A: Its original timestamp. Why? 
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Today’s Class 

• Serializability 
• Two-Phase Locking 
• Deadlocks 
• Lock Granularities 
• Locking in B+Trees 
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Lock Granularities 

• When we say that a txn acquires a “lock”, 
what does that actually mean? 
– On a field? Record? Page? Table? 

• Ideally, each txn should obtain fewest 
number of  locks that is needed… 
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Database Lock Hierarchy 
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Database 

Table 1 Table 2 

Tuple 1 

Attr 1 

Tuple 2 

Attr 2 

Tuple n … 

Attr n … 

 

CMU SCS 

Example 

• T1: Get the balance of Andy’s shady off-
shore bank account. 

• T2: Increase all account balances by 1%. 
 

• Q: What locks should they obtain? 
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Example 

• Q: What locks should they obtain? 
• A: Multiple 

– Exclusive + Shared for leafs of lock tree. 
– Special Intention locks for higher levels 
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Intention Locks 

• Intention locks allow a higher level node to 
be locked in S or X mode without having to 
check all descendent nodes. 

• If a node is in an intention mode, then 
explicit locking is being done at a lower 
level in the tree. 
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Intention Locks 

• Intention-Shared (IS): Indicates explicit 
locking at a lower level with shared locks. 

• Intention-Exclusive (IX): Indicates locking 
at lower level with exclusive or shared locks. 
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Intention Locks 

• Shared+Intention-Exclusive (SIX): The 
subtree rooted by that node is locked 
explicitly in shared mode and explicit 
locking is being done at a lower level with 
exclusive-mode locks. 
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Compatibility Matrix 
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IS IX S SIX X 
IS ✔ ✔ ✔ ✔ X 
IX ✔ ✔ X X X 

S ✔ X ✔ X X 
SIX ✔ X X X X 

X X X X X X 

T1
 H

ol
ds

 

T2 Wants 

CMU SCS 

Multiple Granularity Protocol 
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IS 

S IX 

SIX 

X 
P

ri
vi

le
ge

s 

Stronger 

Weaker 
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Locking Protocol 

• Each txn obtains appropriate lock at highest 
level of the database hierarchy. 

• To get S or IS lock on a node, the txn must 
hold at least IS on parent node. 
– What if txn holds SIX on parent? S on parent? 

• To get X, IX, or SIX on a node, must hold 
at least IX on parent node. 
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Example – Two-level Hierarchy 
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Table R 

Tuple 2 Tuple 1 Tuple n … 

T1 

S 
T1 

IS 
T1 

T2 

X 
T2 IX 

T2 

Read Write 

Read a single record in R. Update a single record in R. 

CMU SCS 

Example – Threesome 

• Assume three txns execute at same time: 
– T1: Scan R and update a few tuples. 
– T2: Scan a portion of tuples in R. 
– T3: Scan all tuples in R. 
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Table R 

Tuple 2 Tuple 1 Tuple n … 

CMU SCS 

Example – Threesome 
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Table R 

Tuple 1 Tuple n … 

T1 

S 
T2 

SIX 
T1 

T2 

X 
T1 IS 

T2 

Read Read+Write 

T3 

Tuple 2 

Read 

S 
T3 

Read 

Scan R and update a few tuples. Scan all tuples in R. Scan a portion of tuples in R. 
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Example – Threesome 

• T1: Get an SIX lock on R, then get X lock 
on tuples that are updated. 

• T2: Get an IS lock on R, and repeatedly get 
an S lock on tuples of R. 

• T3: Two choices: 
– T3 gets an S lock on R.  
– OR, T3 could behave like T2; can use lock 

escalation to decide which. 
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Lock Escalation 

• Lock escalation dynamically asks for 
coarser-grained locks when too many low 
level locks acquired. 

• Reduces the number of requests that the 
lock manager has to process. 
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Multiple Lock Granularities 

• Useful in practice as each txn only needs a 
few locks. 

• Intention locks help improve concurrency: 
– Intention-Shared (IS): Intent to get S lock(s) 

at finer granularity. 
– Intention-Exclusive (IX): Intent to get X 

lock(s) at finer granularity. 
– Shared+Intention-Exclusive (SIX): Like S 

and IX at the same time. 
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Today’s Class 

• Serializability 
• Two-Phase Locking 
• Deadlocks 
• Lock Granularities 
• Locking in B+Trees 
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Locking in B+Trees 

• Q: What about locking indexes? 
• A: They are not quite like other database 

elements so we can treat them differently: 
– It’s okay to have non-serializable concurrent 

access to an index as long as the accuracy of the 
index is maintained. 
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Example 

• T1 wants to insert in H 
• T2 wants to insert in I 
• Q: Why not plain 2PL? 
• A: Because txns have 

to hold on to their 
locks for too long! 
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G I H 

F E D 

C B 

A 

... 

... 

X 
T1 

X 
T1 

X 
T1 

X 
T1 

root 

CMU SCS 

Lock Crabbing 

• Improves concurrency for B+Trees. 
• Get lock for parent; get lock for child; 

release lock for parent if “safe”. 
• Safe Nodes: Any node that won’t split or 

merge when updated. 
– Not full (on insertion) 
– More than half-full (on deletion) 
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Lock Crabbing 

• Search: Start at root and go down; 
repeatedly, 
– S lock child 
– then unlock parent 

• Insert/Delete: Start at root and go down, 
obtaining X locks as needed. Once child is 
locked, check if it is safe: 
– If child is safe, release all locks on ancestors. 
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Example #1 – Search 38 
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3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44 

20 

6 12 23 38 44 

A 

B 

F C 

G H I D E 

35 10 

S 

S 

S 

S 

It’s safe to release the 
lock on A. 
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38 41 

Example #2 – Delete 38 
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3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 

20 

6 12 23 38 44 

A 

B 

F C 

G H I D E 

35 10 

X 

X 

X 

X We know that C will not 
need to merge with F, so 
it’s safe to release A+B. 

We may need to 
coalesce B, so we can’t 
release the lock on A. 
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Example #3 – Insert 45 
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3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45 

20 

6 12 23 38 44 

A 

B 

F C 

G H I D E 

35 10 

X 

X 

X 

X 

E has room so it won’t 
split, so we can 
release B+C. 

We know that if C needs 
to split, B has room so 
it’s safe to release A. 

CMU SCS 
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Example #4 – Insert 25 
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3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 

20 

6 12 23 31 38 44 

A 

B 

F C 

G H I D E 

35 10 

X 

X 

X 

X 
25 

31 
We need to split H so we 
need to keep the lock on 

its parent node. 
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Problems 

• Q: What was the first step that all of the 
update examples did on the B+Tree? 
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20 A 
X 

Delete 38 

20 A 
X 

Insert 45 

20 A 
X 

Insert 25 

CMU SCS 

Problems 

• Q: What was the first step that all of the 
update examples did on the B+Tree? 

• A: Locking the root every time becomes a 
bottleneck with higher concurrency. 
 

• Can we do better? 
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Better Tree Locking Algorithm 

• Main Idea: 
– Assume that the leaf is ‘safe’, and use S-locks 

& crabbing to reach it, and verify. 
– If leaf is not safe, then do previous algorithm. 

• Rudolf Bayer, Mario Schkolnick: 
Concurrency of Operations on B-Trees. 
Acta Inf. 9: 1-21 (1977) 
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38 41 

Example #2 – Delete 38 
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3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 

20 

6 12 23 38 44 

A 

B 

F C 

G H I D E 

35 10 

S 

S 

S 

X 

D will not need to 
coalesce, so we’re safe! 
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Example #4 – Insert 25 
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3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 

20 

6 12 23 31 38 44 

A 

B 

F C 

G H I D E 

35 10 

S 

S 

S 

X 
25 

We need to split H so we 
have to restart and re-
execute like before. 
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Better Tree Locking Algorithm 

• Search: Same as before. 
• Insert/Delete:  

– Set locks as if for search, get to leaf, and set X 
lock on leaf. 

– If leaf is not safe, release all locks, and restart 
txn using previous Insert/Delete protocol. 

• Gambles that only leaf node will be 
modified; if not, S locks set on the first pass 
to leaf are wasteful. 
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Additional Points 

• Q: Which order to release locks in multiple-
granularity locking? 

• A: From the bottom up 
 

• Q: Which order to release locks in tree-
locking? 

• A: As early as possible to maximize 
concurrency. 
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Locking in Practice 

• You typically don’t set locks manually. 
• Sometimes you will need to provide the 

DBMS with hints to help it to improve 
concurrency. 

• Also useful for doing major changes. 
 

 

Faloutsos/Pavlo CMU SCS 15-415/615 96 



CMU SCS 

LOCK TABLE 

 
 
 

• Explicitly locks a table. 
• Not part of the SQL standard. 

– Postgres Modes: SHARE, EXCLUSIVE 
– MySQL Modes: READ, WRITE 
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LOCK TABLE <table> IN <mode> MODE; 
Postgres 

LOCK TABLE <table> <mode>; 
MySQL 

CMU SCS 

SELECT...FOR UPDATE 

 
 

• Perform a select and then sets an exclusive 
lock on the matching tuples. 

• Can also set shared locks: 
– Postgres: FOR SHARE 
– MySQL: LOCK IN SHARE MODE 
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SELECT * FROM <table> 
 WHERE <qualification> FOR UPDATE; 
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Concurrency Control Summary 

• Conflict Serializability ↔ Correctness 
• Automatically correct interleavings: 

– Locks + protocol (2PL, S2PL ...) 
– Deadlock detection + handling 
– Deadlock prevention 
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