g CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#21: Concurrency Control

% CMU SCS

ACID

Last Class

Introduction to Transactions

Concurrency Control
Crash Recovery

(R&G ch. 17)
‘g CMU SCS g CMU SCS ,
Last Class Today’s Class
 For Isolation property, serial execution of o Serializability

transactions is safe but slow

— We want to find schedules equivalent to serial
execution but allow interleaving.

* The way the DBMS does this is with its
concurrency control protocol.

Faloutsos/Pavlo CMU SCS 15-415/615

Deadlocks

Faloutsos/Pavlo

Two-Phase Locking

Lock Granularities
Locking in B+Trees

CMU SCs 15-415/615

g CMU SCS

Formal Properties of Schedules

« Serial Schedule: A schedule that does not
interleave the actions of different
transactions.

- Equivalent Schedules: For any database
state, the effect of executing the first
schedule is identical to the effect of
executing the second schedule.*

(*) no matter what the arithmetic operations are!

Faloutsos/Pavlo CMU SCS 15-415/615

CMU sCs

Formal Properties of Schedules

» Serializable Schedule: A schedule that is
equivalent to some serial execution of the
transactions.

» Note: If each transaction preserves
consistency, every serializable schedule
preserves consistency.

Faloutsos/Pavlo CMU SCS 15-415/615

‘g CMU SCS

Example
T1 T2
BEGIN BEGIN
A=A+100 A=A*1.06
B=B-100 B=B*1.06
COMMIT COMMIT

e Consider two txns:
— T1 transfers $100 from B’s account to A’s
- T2 credits both accounts with 6% interest.

» Assume at first A and B each have $1000.

Faloutsos/Pavlo CMU SCS 15-415/615

g CMU SCS

Example

* Legal outcomes:
— A=1166, B=954 —$2120
— A=1160, B=960 —$2120

» The outcome depends on whether T1
executes before T2 or vice versa.

Faloutsos/Pavlo CMU SCS 15-415/615

g CMU SCS

Interleaving Example (Good)

Schedule Schedule
T1 T2 T1 T2
BEGIN BEGIN
A=A+100 A=A+100
BEGIN B=B-100
A=A*1.06 COMMIT

=810 = BEGIN
— A=A*1.06
<§=B*1 . OD B=B*1.06

COMMIT
=1166, B=954 A=1166, B=954

CMU SCS 15-415/615 9

Faloutsos/Pavlo

‘g CMU SCS

Interleaving Example (Bad)

Schedule
T1 T2

BEGIN

A=A+100
BEGIN _ _
A=A*1.06 A=1166, B=954
B=B*1.06
COMMIT or

B=B—100 _ B

COMMIT A=1160, B=960

A=1166, B=960

\[The bank lost $6!]

CMU SCs 15-415/615 10

Faloutsos/Pavlo

CMU sCSs

Formal Properties of Schedules

» There are different levels of serializability:

— Conflict Serlallzabllltyﬁ All DBMSs Support this.]
— View Serializability

This is harder but allows for
more concurrency.

CMU SCS 15-415/615 11

Faloutsos/Pavlo

CMU sCs

Conflicting Operations

* We need a formal notion of equivalence that
can be implemented efficiently...

— Base it on the notion of “conflicting” operations

« Definition: Two operations conflict if:
— They are by different transactions,

— They are on the same object and at least one of
them is a write.

Faloutsos/Pavlo CMU SCs 15-415/615 12

CMU sCS

Conflict Serializable Schedules

» Two schedules are conflict equivalent iff:

— They involve the same actions of the same
transactions, and

— Every pair of conflicting actions is ordered the
same way.

e Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule.

Faloutsos/Pavlo CMU SCS 15-415/615

13

CMU sCs

Conflict Serializability Intuition

» A schedule S is conflict serializable if:

— You are able to transform S into a serial
schedule by swapping consecutive non-
conflicting operations of different transactions.

Faloutsos/Pavlo CMU SCs 15-415/615 14

CMU sCSs

Conflict Serializability Intuition

Schedule Serial Schedule
T1 T2 T1 T2

BEGIN BEGIN BEGIN

R(A) R(A)

W(A) W(A)

R(B) rR(A) R(B)

R(B) 4~ R(A) — |w(B)

R(B) R(A) - COMMIT BEGIN

W(B) W(A) R(A)

COMMIT W(A)
R(B) R(B)
W(B) W(B)
COMMIT COMMIT

Faloutsos/Pavlo

CMU SCS 15-415/615

15

CMU sCs

Conflict Serializability Intuition

Schedule Serial Schedule
T1 T2 T1 T2
BEGIN BEGIN BEGIN
R(A) R(A)
R(A) W(A)
W(A) COMMIT BEGIN
W(A) 4"y E R(A)
COMMIT COMMIT W(A)
¢ COMMIT

Faloutsos/Pavlo

CMU SCs 15-415/615

16

g CcMU sCS - - N
Serializability

* Q: Are there any faster algorithms to figure
this out other than transposing operations?

Faloutsos/Pavlo CMU SCS 15-415/615 17

‘% CMU SCS

Dependency Graphs
 One node per txn.

» Edge from Ti to Tj if: a m

— An operation Oi of Ti conflicts with an
operation Oj of Tj and
— Oi appears earlier in the schedule than Oj.

 Also known as a “precedence graph”

Faloutsos/Pavlo CMU SCs 15-415/615 18

g cMu scs
Dependency Graphs

* Theorem: A schedule is conflict
serializable if and only if its dependency
graph is acyclic.

Faloutsos/Pavlo CMU SCS 15-415/615 19

g cMu scs
Example #1

Schedule Dependency Graph

T1 T2 A
BEGIN BEGIN

@‘@
W(A)\
L R 4 R(A

)
®. o
L Al 2 R(B)

W(B)

/connn The cycle in the graph

R(B) reveals the problem. The
W(B) output of T1 depends on
COMMIT T2, and vice-versa.

Faloutsos/Pavlo CMU SCS 15-415/615 20

g cMu scs
Example #2 — Lost Update

Schedule Dependency Graph
T1 T2 A

BEGIN BEGIN
R(A)
A =Nl
R(A)
?:;f A= A-1 A
oW W(A)

COMMIT
W(A)

COMMIT

Faloutsos/Pavlo CMU SCS 15-415/615 21

% CMU SCS

Example #3 — Threesome

Schedule Dependency Graph
T1 T2 T3
BEGIN B
—2)
W(A) BEGIN
1‘* R(A)
W(A) A

BEGIN | COMMIT
(19
W(B)

R(B)""COMMIT

W(B)

COMMIT

Faloutsos/Pavlo CMU SCs 15-415/615 22

‘g CMU SCS

Example #3 — Threesome

* Q: Is this equivalent to a serial execution?
o A: Yes(T2,T1,T3)

— Notice that T3 should go after T2, although it
starts before it!

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU sCs

Example #4 — Inconsistent Analysis

Schedule Dependency Graph

T1 T2 A
BEGIN BEGIN

R(A)
A = A-10
W(A)
\R(A) B
L P 4 sum = A
@ i
oWy

CecHo(sun))
R(B)

B = g+10

Is it possible to create a
schedule similar to this

W(B) that is “correct” but still
CoMMIT not conflict serializable?
Faloutsos/Pavlo CMU SCs 15-415/615 24

CMU sCS

Example #4 — Inconsistent Analysis

Schedule Dependency Graph
T1 T2 A
BEGIN BEGIN
R(A)
A = A-10
W(A)
\R(A)
if(A>0): cnt++ | B
R(B) l
if(B>0): cnt++ |
ECHO(cnt)
R e T T2 counts the number of
W(B) active accounts.
COMMIT
Faloutsos/Pavlo CMU SCS 15-415/615 25

525; cMU scs - . - N
View Serializability

« Alternative (weaker) notion of
serializability.
 Schedules S1 and S2 are view equivalent if:

— If T1 reads initial value of A in S1, then T1 also
reads initial value of A in S2.

— If T1 reads value of A written by T2 in S1, then
T1 also reads value of A written by T2 in S2.

— If T1 writes final value of A in S1, then T1 also
writes final value of A in S2.

Faloutsos/Pavlo CMU SCs 15-415/615 26

‘g CMU SCS

View Serializability

Schedule Dependency Graph
T1 T2 T3 A

BEGIN
W(A)
W(A)
COMMIT | COMMIT | COMMIT A @ A

Faloutsos/Pavlo CMU SCS 15-415/615 27

3%!: cMU scs - . - N
View Serializability

Schedule Schedule
T1 T2 T3 T1 T2 T3
BEGIN BEGIN
R(A) BEGIN R(A)
W(A) W(A)
BEGIN view | | COMMIT
W(A) — BEGIN
G D= W(A)
COMMIT | COMMIT 'EOHH!(/_ COMMIT
=) | T
Allows all conflict < W(A) >
serializable schedules + CoHH
“plind writes”
Faloutsos/Pavlo CMU SCS 15-415/615 28

g CMU SCS % CMU SCS

Serializability Serializability
* View Serializability allows (slightly) more * In practice, Conflict Serializability is what
schedules than Conflict Serializability does. gets used, because it can be enforced
— But is difficult to enforce efficiently. efficiently.
* Neither definition allows all schedules that — To allow more concurrency, some special cases
you would consider “serializable”. get handled separately, such as for travel

. reservations, etc.
— This is because they don’t understand the

meanings of the operations or the data (recall
example #4)

Faloutsos/Pavlo CMU SCS 15-415/615 29 Faloutsos/Pavlo CMU SCs 15-415/615 30

‘g CMU SCS g CMU SCS

Schedules Today’s Class
(All Schedules . —)
View Serializable
« Two-Ph i
(Conflict Serializable wo-Phase Locking
e Deadlocks
» Lock Granularities
e Locking in B+Trees
- V,
- J
- Y,

Faloutsos/Pavlo 15-415/615 31 Faloutsos/Pavlo CMU SCS 15-415/615 32

g CMU SCS

Faloutsos/Pavlo

Executing with Locks

N

T1 T2 \m\Lock Manager
BEGIN
X-LOCK(A) »| Granted (T1—A)
R(A)

W(A)
UNROCK(A) »| Released (T1—A)
BEGIN
*a’ X-LOCK (A) g===| Granted (T2—A)
Jo W)

/ UNLOCK (A) == | Released (T2—A)
S-w0Q#(A) 2| Granted (T1—A)
R(A)

UNLOCK(A) > \Released (T1—-A))
COMMIT COMMIT
CMU SCS 15-415/615 33

Vg cMu scs
Two-Phase Locking

* Phase 1: Growing

— Each txn requests the locks that it needs from
the DBMS’s lock manager.

— The lock manager grants/denies lock requests.
e Phase 2: Shrinking

— The txn is allowed to only release locks that it

previously acquired. It cannot acquire new
locks.

Faloutsos/Pavlo CMU SCs 15-415/615 34

‘g CMU SCS

of Locks

» The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

Faloutsos/Pavlo

Two-Phase Locking

Transaction Lifetime

Growing Phase

Shrinking Phase

35

g cMu scs
Two-Phase Locking

» The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

Transaction Lifetime

[2PL Violation! |

of Locks

Growing Phase Shrinking Phase

Faloutsos/Pavlo

36

g CMU SCS ‘g CMU SCS

Executing with 2PL Two-Phase Locking
T1 T \m\,_ock Manager | * 2PL on its own IS _sgffic_ient to guarantee
BEGIN ; conflict serializability (i.e., schedules whose
X-LOCK(A)g 2| Granted (T1—A) . . iy -
R(A) precedence graph is acyclic), but, it is
W BEGIN subject to cascading aborts.
X-LOCK (A) === Denied!
RA) PN
UNLOCK(A) R »| Released (T1—A) P
COMMIT v o
W(A) < Granted (T2—A) =
UNLOCK (A) ====>| Released (T2—A) =
COMMIT S y
Growing Phase Shrinking Phase
Faloutsos/Pavlo CMU SCS 15-415/615 37 Faloutsos/Pavlo : TN ! 38

‘g CMU SCS g CMU SCS

2PL — Cascading Aborts 2PL Observations
Schedule
T1 T « There are schedules that are serializable but
BEGIN [BECTN <" Thisis a permissible would not be allowed by 2PL.
X-LOCK(B) schedule in 2PL, but we e Locking limits concurrency.
mﬁi have to abort T2 too.

UNLOCK (A) May lead to deadlocks.

X-LOCK (A) May still have “dirty reads”

R(A) — . .
W(A) [This is all wasted work!] _ Solution: Strict 2PL

R(B)

G

Faloutsos/Pavlo CMU SCS 15-415/615 39 Faloutsos/Pavlo CMU SCs 15-415/615 40

g cMu scs
Strict Two-Phase Locking

» The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

 Allows only conflict serializable schedules,
but it is actually stronger than needed.

Release all Iocks\
at end of txn.

of Locks

Growing Phase

Faloutsos/Pavlo

Shrinking Phase

41

‘g cMU scs
Strict Two-Phase Locking

» A schedule is strict if a value written by a
txn is not read or overwritten by other txns
until that txn finishes.

 Advantages:

— Recoverable.
— Do not require cascading aborts.

— Aborted txns can be undone by just restoring
original values of modified tuples.

Faloutsos/Pavlo CMU SCs 15-415/615 42

‘g CMU SCS

Examples

e T1: Move $50 from Andy’s account to his
bookie’s account.

» T2: Compute the total amount in all
accounts and return it to the application.
 Legend:
—A — Andy’s account.
— B — The bookie’s account.

Faloutsos/Pavlo CMU SCS 15-415/615 43

g cMu scs
Non-2PL Example

T1 12

BEGIN BEGIN Initial State
X-LOCK(A) A=100. B=100
R(A) S-LOCK(A))
A=A-50 -
W(A) &)
UNLOCK (A v
" R(A) T2 Output
UNLOCK (A)
S-LOCK(B) 150
X-LOCK(B)
. R(B)
o
R(B) (ECHO (A+B
B=B+50
W(B)
UNLOCK (B)
COMMIT .

g CMU SCS

% CMU SCS

2PL Example Strict 2PL Example
BE Gl‘l BEG;II-IZ Initial State BEG;Il;l BEGI‘Z Initial State
X-LOCK(A) - - X-LOCK(A) = =
R(A) S-LOCK(A) A=100, B=100 R(A) S-LOCK(A) A=100, B=100
A=A-50 . A=A-50 .
W(A) 10 W(A) ©
X-LOCK(B) : X-LOCK(B) :
UNLOCK(A) | W T2 Output R(B) . T2 Output
o LOcK (B} 200 S - 200
R(B) : UNLOCK(A) v
B=B+50 n UNLOCK(B) |R(A)
W(B) : COMMIT S-LOCK(B)
UNLOCK(B) v R(B)
COMMIT R(B) ECHO (A+B)
UNLOCK(A) UNLOCK(A)
UNLOCK(B) UNLOCK(B)
ECHO (A+B) COMMIT
COMMIT 4 46
Strict Two-Phase Locking Schedules

» Txns hold all of their locks until commit.
» Good:

— Avoids “dirty reads” etc
 Bad:

— Limits concurrency even more

— And still may lead to deadlocks

Faloutsos/Pavlo CMU SCS 15-415/615 47

(All Schedules

@ View Serializable

Conflict Serializable

Avoid

Cascading

Abort

_

~

Faloutsos/Pavlo

15-415/615

g CMU SCS

Today’s Class

e Deadlocks
e Lock Granularities
* Locking in B+Trees

‘% CMU SCS

Two-Phase Locking

o 2PL seems to work well.
* Is that enough? Can we just go home now?

Faloutsos/Pavlo CMU SCS 15-415/615 49 Faloutsos/Pavlo CMU SCS 15-415/615 50
Shit Just Got Real Deadlocks
T1 T2 81 ock Manager | Deadlock: Cycle of transactions waiting for
|
BEGIN BEGIN ‘ locks to be released by each other.
X-LOCK(A) =| Granted (T1—A) i i
o S LocK(®) F==| Granted (T2—B) » Two ways of dealing with deadlocks:
Ff%‘ S-LOCK(A) t==>|Denied! — Deadlock prevention
X-LOCK (B) el »| Denied! — Deadlock detection
« Many systems just punt and use timeouts
a — What are the dangers with this approach?
v ; . J

Faloutsos/Pavlo

CMU SCS 15-415/615

51

Faloutsos/Pavlo CMU SCs 15-415/615 52

g CMU SCS

Deadlock Detection

* The DBMS creates a waits-for graph:
— Nodes are transactions
— Edge from Ti to Tj if Ti is waiting for Tj to
release a lock
» The system periodically check for cycles in

% CMU SCS

Deadlock Detection

Schedule Waits-for Graph
T1 T2 T3

BEGIN BEGIN BEGIN
S-LOCK(A)

S-LOCK(D)

XNLOCK (B)
S-LOCK(C) @
S-LOCK(B) f

X-LOCK(

waits-for graph. X-LOCK (A)
‘g CcMU sCS . g cMu scs -
Deadlock Detection Deadlock Handling

» How often should we run the algorithm?
* How many txns are typically involved?
» What do we do when we find a deadlock?

Faloutsos/Pavlo CMU SCS 15-415/615 55

Waits-for Graph

e Q: What do we do?

e A: Select a “victim” and
rollback it back to break the
deadlock.

Faloutsos/Pavlo CMU SCs 15-415/615 56

g cMu scs -
Deadlock Handling

Waits-for Graph
e Q: Which one do we choose? D)
 A: It depends... ‘
— By age (lowest timestamp) @
— By progress (least/most queries executed)
— By the # of items already locked
— By the # of txns that we have to rollback with it

* We also should consider the # of times a txn
has been restarted in the past.

Faloutsos/Pavlo CMU SCS 15-415/615 57

% cMU scs -
Deadlock Handling

Waits-for Graph
e Q: How far do we rollback?
o A: ltdepends...

N
— Completely @

— Minimally (i.e., just enough to release locks)

Faloutsos/Pavlo CMU SCs 15-415/615 58

CMU sCSs

Deadlock Prevention

* When a txn tries to acquire a lock that is held

by another txn, kill one of them to prevent a
deadlock.

» No waits-for graph or detection algorithm.

Faloutsos/Pavlo CMU SCS 15-415/615 59

CMU sCs

Deadlock Prevention

 Assign priorities based on timestamps:
— Older — higher priority (e.g., T1 > T2)
» Two different prevention policies:

— Wait-Die: If T1 has higher priority, T1 waits for
T2; otherwise T1 aborts (“old wait for young™)

— Wound-Wait: If T1 has higher priority, T2
aborts; otherwise T1 waits (“young wait for old”)

Faloutsos/Pavlo CMU SCs 15-415/615 60

CMU sCS

T1

Deadlock Prevention

T2

CMU sCs

Deadlock Prevention

* Lock Granularities
* Locking in B+Trees

Faloutsos/Pavlo

CMU SCS 15-415/615 63

» When we say that a txn acquires a “lock”,
what does that actually mean?

— On afield? Record? Page? Table?

o ldeally, each txn should obtain fewest
number of locks that is needed...

Faloutsos/Pavlo CMU SCS 15-415/615

BEGIN Wait-Die Wound-Wait * Q: Why do these schemes guarantee no
gfff,'c“m | P Tlwaits T2aborted deadlocks?

X-Locae™ « A: Only one “type” of direction allowed.
T1 T2 * Q: When a transaction restarts, what is its

R LOCK (A) Wait-Die Wound-Wait (new) priority?
LN T2 aborted T2 waits « A: Its original timestamp. Why?

Faloutsos/Pavlo CMU SCS 15-415/615 61 Faloutsos/Pavlo CMU SCS 15-415/615 62
Today’s Class Lock Granularities

64

g CMU SCS

% CMU SCS

o A: Multiple

Faloutsos/Pavlo

* Q: What locks should they obtain?

— Exclusive + Shared for leafs of lock tree.
— Special Intention locks for higher levels

CMU SCS 15-415/615

67

* Intention locks allow a higher level node to

check all descendent nodes.

 If anode is in an intention mode, then
explicit locking is being done at a lower
level in the tree.

Faloutsos/Pavlo CMU SCS 15-415/615

Database Lock Hierarchy Example
Database o T1: Get the balance of Andy’s shady off-
_ shore bank account.
~ Table1 [Table 2] « T2: Increase all account balances by 1%.
Otupler | |2 Tuple2 « Q: What locks should they obtain?
Sart | [Batr2 | [P At
‘g CMU SCS g CMU SCS -
Example Intention Locks

be locked in S or X mode without having to

68

CMU sCS
P -

Intention Locks

—
A2

 Intention-Shared (1S): Indicates explicit
locking at a lower level with shared locks.

* Intention-Exclusive (IX): Indicates locking

at lower level with exclusive or shared locks.

Faloutsos/Pavlo CMU SCS 15-415/615 69

mmmmm

‘g CMU SCS

Intention Locks

 Shared+Intention-Exclusive (SIX): The
subtree rooted by that node is locked
explicitly in shared mode and explicit
locking is being done at a lower level with
exclusive-mode locks.

Faloutsos/Pavlo CMU SCs 15-415/615 70

g cMu scs
Compatibility Matrix

T2 Wants
IS IX S SIX X
sl v v v v X
é IX| v v X X X
- siv X v X X
Fosixl v X X X X
Xl X X X X X

Faloutsos/Pavlo CMU SCS 15-415/615 71

CMU sCs

Multiple Granularity Protocol

)
m'a
SIX
A\ 2

O

CMU SCs 15-415/615 72

Weaker

Stronger

Faloutsos/Pavlo

g CMU SCS

Locking Protocol

 Each txn obtains appropriate lock at highest
level of the database hierarchy.

* Toget Sor IS lock on a node, the txn must
hold at least IS on parent node.
— What if txn holds SIX on parent? S on parent?

* Toget X, IX, or SIX on a node, must hold
at least 1X on parent node.

Faloutsos/Pavlo CMU SCS 15-415/615 73

‘g CMU SCS

Example — Two-level Hierarchy

Reac T2 Wants inR.
IS IX S SIX X
sl vCvDOv v X
% X v v X X X
a slv X v X X
© SIX| v X X X X
X X X X X X
Read Write
FalousosPavlo oMU SCS 154158635 "

‘g CMU SCS

Example — Threesome

» Assume three txns execute at same time:
— T1: Scan R and update a few tuples.
— T2: Scan a portion of tuples in R.
— T3: Scan all tuples in R.

Table R

[Tuple 1 l[Tuple 2 ll Tuple n l

Faloutsos/Pavlo CMU SCS 15-415/615 75

g CMU SCS

Example — Threesome

Scan R and update a few tigdas.all tuples in &an a portion of tuples in R.

Read Read ReddeatIrite

Faloutsos/Pavlo CMU SCs 15-415/615 76

g CMU SCS

Example — Threesome

» T1: Getan SIX lock on R, then get X lock
on tuples that are updated.

* T2: Getan IS lock on R, and repeatedly get
an S lock on tuples of R.

e T3: Two choices:
— T3 gets an S lock on R.

— OR, T3 could behave like T2; can use lock
escalation to decide which.

Faloutsos/Pavlo CMU SCS 15-415/615 7

% CMU SCS

Lock Escalation

 Lock escalation dynamically asks for
coarser-grained locks when too many low
level locks acquired.

» Reduces the number of requests that the
lock manager has to process.

Faloutsos/Pavlo CMU SCS 15-415/615

78

CMU sCSs

Multiple Lock Granularities

» Useful in practice as each txn only needs a
few locks.

* Intention locks help improve concurrency:
— Intention-Shared (1S): Intent to get S lock(s)
at finer granularity.

— Intention-Exclusive (1X): Intent to get X
lock(s) at finer granularity.

— Shared+Intention-Exclusive (SIX): Like S
and IX at the same time.

Faloutsos/Pavlo CMU SCS 15-415/615 79

g cMU scs
Today’s Class

e Locking in B+Trees

Faloutsos/Pavlo CMU SCS 15-415/615

80

g CMU SCS

Locking in B+Trees

* Q: What about locking indexes?
» A: They are not quite like other database
elements so we can treat them differently:

— It’s okay to have non-serializable concurrent
access to an index as long as the accuracy of the
index is maintained.

Faloutsos/Pavlo CMU SCS 15-415/615 81

% CMU SCS

Example

T1 wants to insert in H
T2 wants to insert in |
Q: Why not plain 2PL?
A: Because txns have

to hold on to their
locks for too long!

Faloutsos/Pavlo CMU SCs 15-415/615 82

g cMu scs -
Lock Crabbing

» Improves concurrency for B+Trees.

 Get lock for parent; get lock for child;
release lock for parent if “safe”.

» Safe Nodes: Any node that won’t split or
merge when updated.
— Not full (on insertion)
— More than half-full (on deletion)

Faloutsos/Pavlo CMU SCS 15-415/615 83

g CMU SCS

Lock Crabbing

 Search: Start at root and go down;
repeatedly,
— S lock child
— then unlock parent

 Insert/Delete: Start at root and go down,
obtaining X locks as needed. Once child is
locked, check if it is safe:
— If child is safe, release all locks on ancestors.

Faloutsos/Pavlo CMU SCs 15-415/615 84

g CMU SCS g CMU SCS
Example #1 — Search 38 Example #2 — Delete 38
|10 5] ||B 235 /B
It’s safe to release the \ We may need to , \
lock on A. S coalesce B, so we can’t
R e 211 13844]|C [6]] [{releasethelockon 6-/@ 8|[44]|C
j \ / \ \ Wedknow that C V\r/]ill not
t ith F,
|3|4H6|9H10|11H12|13H20|22H23|31H35% Yiasa]]| [3]4]{6]0fa0]11]{1d 105 2 T raiense Atn. KO n.
G H | D E G i T D E
Faloutsos/Pavlo CMU SCS 15-415/615 85 Faloutsos/Pavlo CMU SCS 15-415/615 86
g CMU SCS wg CMU SCS
Example #3 — Insert 45 Example #4 — Insert 25
(][I _—wss|| [B /B
/ We know that if C needs \
to split, B has room so
6 []| it's safe to release A.)@ e 6] [[22] \ F |[38]l44]|C
/[\] \
'3[4f6]9f10]11}12[13H20 :) | 3]4f{eloHoluiliazl1320T77Kes] 28 Y3536 38|41 44| |
E has room so it won’t We need to split H so we H I D E
split, so we can need to keep the lock on 31]]
Faloutsos/Pavlo CMU SC release B+C. 87 Fal its parent node. 15/615 88

g CMU SCS

Problems

* Q: What was the first step that all of the
update examples did on the B+Tree?

e N\ [N\ [
Delete 38 Insert 45 Insert 25
(X)) (X)) (X))
p2o]l A 2ol A 2ol [|A
\\ J \\ J \\

J/

Faloutsos/Pavlo CMU SCS 15-415/615 89

‘g CMU SCS

Problems

* Q: What was the first step that all of the
update examples did on the B+Tree?

» A: Locking the root every time becomes a
bottleneck with higher concurrency.

e Can we do better?

Faloutsos/Pavlo CMU SCS 15-415/615 90

g CcMU sCS
Better Tree Locking Algorithm

e Main ldea:

— Assume that the leaf is ‘safe’, and use S-locks
& crabbing to reach it, and verify.

— If leaf is not safe, then do previous algorithm.
* Rudolf Bayer, Mario Schkolnick:

Concurrency of Operations on B-Trees.

Acta Inf. 9: 1-21 (1977)

Faloutsos/Pavlo CMU SCS 15-415/615

w}g CMU SCS

Example #2 — Delete 38

|10 135 |

I [[

13]4f6]9l10/11[12[13}H20]22}23[31} 35

D will not need to
cmy coalesce, so we’re safel

Faloutsos/Pavlo

g CMU SCS

£

Example #4 — Insert 25

sl | I

[23||31|[F |[3s||44]/C

76es 25N a5 a6 {3e[41Haa] |
We need to spllt H so we H I D E

have to restartand re- | N
execute like before.

Fald

Vg cMU scs
Better Tree Locking Algorithm

e Search: Same as before.

e Insert/Delete:

— Set locks as if for search, get to leaf, and set X
lock on leaf.

— If leaf is not safe, release all locks, and restart
txn using previous Insert/Delete protocol.
o Gambles that only leaf node will be
modified; if not, S locks set on the first pass
to leaf are wasteful.

Faloutsos/Pavlo CMU SCs 15-415/615 94

CMU sCSs

Additional Points

* Q: Which order to release locks in multiple-
granularity locking?

* A: From the bottom up

* Q: Which order to release locks in tree-
locking?

» A: As early as possible to maximize
concurrency.

Faloutsos/Pavlo CMU SCS 15-415/615 95

g CMU SCS

Locking in Practice

* You typically don’t set locks manually.

» Sometimes you will need to provide the
DBMS with hints to help it to improve
concurrency.

o Also useful for doing major changes.

Faloutsos/Pavlo CMU SCs 15-415/615 96

g CMU SCS ‘% CMU SCS

LOCK TABLE SELECT...FOR UPDATE
Postgres
LOCK TABLE <table> IN <mode> MODE; SELECT * FROM <table>
WHERE <qualification> FOR UPDATE;

MySQL
LOCK TABLE <table> <mode>;

» Perform a select and then sets an exclusive
lock on the matching tuples.

e Can also set shared locks:

— Postgres: FOR SHARE
- MySQL: LOCK IN SHARE MODE

» Explicitly locks a table.

* Not part of the SQL standard.
— Postgres Modes: SHARE, EXCLUSIVE
— MySQL Modes: READ, WRITE

Faloutsos/Pavlo CMU SCS 15-415/615 97 Faloutsos/Pavlo CMU SCs 15-415/615 98

‘g CMU SCS

Concurrency Control Summary

» Conflict Serializability <« Correctness

» Automatically correct interleavings:
— Locks + protocol (2PL, S2PL ...)
— Deadlock detection + handling
— Deadlock prevention

Faloutsos/Pavlo CMU SCS 15-415/615 99

