
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo
Lecture#21: Concurrency Control

 (R&G ch. 17)

CMU SCS

Last Class

• Introduction to Transactions
• ACID
• Concurrency Control
• Crash Recovery

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Last Class

• For Isolation property, serial execution of
transactions is safe but slow
– We want to find schedules equivalent to serial

execution but allow interleaving.
• The way the DBMS does this is with its

concurrency control protocol.

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

Today’s Class

• Serializability
• Two-Phase Locking
• Deadlocks
• Lock Granularities
• Locking in B+Trees

Faloutsos/Pavlo CMU SCS 15-415/615 4

CMU SCS

Formal Properties of Schedules

• Serial Schedule: A schedule that does not
interleave the actions of different
transactions.

• Equivalent Schedules: For any database
state, the effect of executing the first
schedule is identical to the effect of
executing the second schedule.*

Faloutsos/Pavlo CMU SCS 15-415/615 5

(*) no matter what the arithmetic operations are!

CMU SCS

Formal Properties of Schedules

• Serializable Schedule: A schedule that is
equivalent to some serial execution of the
transactions.

• Note: If each transaction preserves
consistency, every serializable schedule
preserves consistency.

Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

Example

• Consider two txns:
– T1 transfers $100 from B’s account to A’s
– T2 credits both accounts with 6% interest.

• Assume at first A and B each have $1000.

Faloutsos/Pavlo CMU SCS 15-415/615 7

BEGIN
A=A+100
B=B–100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

CMU SCS

Example

• Legal outcomes:
– A=1166, B=954
– A=1160, B=960

• The outcome depends on whether T1
executes before T2 or vice versa.

Faloutsos/Pavlo CMU SCS 15-415/615 8

→$2120
→$2120

CMU SCS

Interleaving Example (Good)

Faloutsos/Pavlo CMU SCS 15-415/615 9

≡

A=1166, B=954 A=1166, B=954

T
IM

E

BEGIN
A=A+100

B=B–100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

BEGIN
A=A+100
B=B–100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule Schedule

CMU SCS

Interleaving Example (Bad)

Faloutsos/Pavlo CMU SCS 15-415/615 10

≢

A=1166, B=960

T
IM

E
 A=1166, B=954

or
A=1160, B=960

BEGIN
A=A+100

B=B–100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

The bank lost $6!

CMU SCS

Formal Properties of Schedules

• There are different levels of serializability:
– Conflict Serializability
– View Serializability

Faloutsos/Pavlo CMU SCS 15-415/615 11

All DBMSs support this.

This is harder but allows for
more concurrency.

CMU SCS

Conflicting Operations

• We need a formal notion of equivalence that
can be implemented efficiently…
– Base it on the notion of “conflicting” operations

• Definition: Two operations conflict if:

– They are by different transactions,
– They are on the same object and at least one of

them is a write.

Faloutsos/Pavlo CMU SCS 15-415/615 12

CMU SCS

Conflict Serializable Schedules

• Two schedules are conflict equivalent iff:
– They involve the same actions of the same

transactions, and
– Every pair of conflicting actions is ordered the

same way.
• Schedule S is conflict serializable if:

– S is conflict equivalent to some serial schedule.

Faloutsos/Pavlo CMU SCS 15-415/615 13

CMU SCS

Conflict Serializability Intuition

• A schedule S is conflict serializable if:
– You are able to transform S into a serial

schedule by swapping consecutive non-
conflicting operations of different transactions.

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Conflict Serializability Intuition

Faloutsos/Pavlo CMU SCS 15-415/615 15

≡

T
IM

E

BEGIN
R(A)
W(A)

COMMIT

T1 T2
BEGIN

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

Schedule Serial Schedule

R(B) W(A)

R(A)
R(B) W(A) R(A)
R(B)

W(B)
W(B)

W(A)
R(A)

W(B)

CMU SCS

Conflict Serializability Intuition

Faloutsos/Pavlo CMU SCS 15-415/615 16

T
IM

E

BEGIN
R(A)

W(A)
COMMIT

T1 T2
BEGIN

R(A)
W(A)

COMMIT

BEGIN
R(A)
W(A)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

Schedule Serial Schedule

≢

CMU SCS

Serializability

• Q: Are there any faster algorithms to figure
this out other than transposing operations?

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Dependency Graphs

• One node per txn.
• Edge from Ti to Tj if:

– An operation Oi of Ti conflicts with an
operation Oj of Tj and

– Oi appears earlier in the schedule than Oj.
• Also known as a “precedence graph”

Faloutsos/Pavlo CMU SCS 15-415/615 18

Ti Tj

CMU SCS

Dependency Graphs

• Theorem: A schedule is conflict
serializable if and only if its dependency
graph is acyclic.

Faloutsos/Pavlo CMU SCS 15-415/615 19

CMU SCS

Example #1

Faloutsos/Pavlo CMU SCS 15-415/615 20

T
IM

E

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

T1 T2
BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

Schedule

T1 T2

A

B

Dependency Graph

The cycle in the graph
reveals the problem. The
output of T1 depends on

T2, and vice-versa.

CMU SCS

Example #2 – Lost Update

Faloutsos/Pavlo CMU SCS 15-415/615 21

T
IM

E

BEGIN
R(A)
A = A-1

W(A)
COMMIT

T1 T2
BEGIN

R(A)
A = A-1
W(A)
COMMIT

Schedule

T1 T2

A

A

Dependency Graph

CMU SCS

Example #3 – Threesome

Faloutsos/Pavlo CMU SCS 15-415/615 22

T
IM

E

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(B)
W(B)
COMMIT

Schedule

T1 T2

Dependency Graph
T3

BEGIN
R(A)
W(A)
COMMIT

T3

B

A

CMU SCS

Example #3 – Threesome

• Q: Is this equivalent to a serial execution?
• A: Yes (T2, T1, T3)

– Notice that T3 should go after T2, although it
starts before it!

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

Example #4 – Inconsistent Analysis

Faloutsos/Pavlo CMU SCS 15-415/615 24

T
IM

E

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

T1 T2
BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO(sum)
COMMIT

Schedule

T1 T2

A

B

Dependency Graph

Is it possible to create a
schedule similar to this
that is “correct” but still
not conflict serializable?

CMU SCS

Example #4 – Inconsistent Analysis

Faloutsos/Pavlo CMU SCS 15-415/615 25

T
IM

E

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

T1 T2
BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO(cnt)
COMMIT

Schedule

T1 T2

A

B

Dependency Graph

T2 counts the number of
active accounts.

if(A>0): cnt++

if(B>0): cnt++

CMU SCS

View Serializability

• Alternative (weaker) notion of
serializability.

• Schedules S1 and S2 are view equivalent if:
– If T1 reads initial value of A in S1, then T1 also

reads initial value of A in S2.
– If T1 reads value of A written by T2 in S1, then

T1 also reads value of A written by T2 in S2.
– If T1 writes final value of A in S1, then T1 also

writes final value of A in S2.
 Faloutsos/Pavlo CMU SCS 15-415/615 26

CMU SCS

View Serializability

Faloutsos/Pavlo CMU SCS 15-415/615 27

T
IM

E

BEGIN
R(A)

W(A)

COMMIT

T1 T2

BEGIN
W(A)

COMMIT

Schedule
T3

BEGIN

W(A)
COMMIT

Dependency Graph

A

A

A A A

T1 T2

T3

CMU SCS

View Serializability

Faloutsos/Pavlo CMU SCS 15-415/615 28

T
IM

E

BEGIN
R(A)

W(A)

COMMIT

T1 T2

BEGIN
W(A)

COMMIT

Schedule
T3

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

T1 T2

BEGIN
W(A)
COMMIT

Schedule
T3

BEGIN
W(A)
COMMIT

Allows all conflict
serializable schedules +

“blind writes”

≡ VIEW

CMU SCS

Serializability

• View Serializability allows (slightly) more
schedules than Conflict Serializability does.
– But is difficult to enforce efficiently.

• Neither definition allows all schedules that
you would consider “serializable”.
– This is because they don’t understand the

meanings of the operations or the data (recall
example #4)

Faloutsos/Pavlo CMU SCS 15-415/615 29

CMU SCS

Serializability

• In practice, Conflict Serializability is what
gets used, because it can be enforced
efficiently.
– To allow more concurrency, some special cases

get handled separately, such as for travel
reservations, etc.

Faloutsos/Pavlo CMU SCS 15-415/615 30

CMU SCS

All Schedules

Schedules

Faloutsos/Pavlo 15-415/615 31

View Serializable

Conflict Serializable

Serial

CMU SCS

Today’s Class

• Serializability
• Two-Phase Locking
• Deadlocks
• Lock Granularities
• Locking in B+Trees

Faloutsos/Pavlo CMU SCS 15-415/615 32

CMU SCS

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

T1 T2

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

Executing with Locks

Faloutsos/Pavlo CMU SCS 15-415/615 33

T
IM

E

Lock Manager

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)
Granted (T1→A)

Released (T1→A)

CMU SCS

Two-Phase Locking

• Phase 1: Growing
– Each txn requests the locks that it needs from

the DBMS’s lock manager.
– The lock manager grants/denies lock requests.

• Phase 2: Shrinking
– The txn is allowed to only release locks that it

previously acquired. It cannot acquire new
locks.

Faloutsos/Pavlo CMU SCS 15-415/615 34

CMU SCS

Two-Phase Locking

• The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

Faloutsos/Pavlo CMU SCS 15-415/615 35

Growing Phase Shrinking Phase

TIME

Transaction Lifetime

CMU SCS

Two-Phase Locking

• The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

Faloutsos/Pavlo CMU SCS 15-415/615 36

Growing Phase Shrinking Phase

TIME

Transaction Lifetime

2PL Violation!

CMU SCS

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

T1 T2

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

Executing with 2PL

Faloutsos/Pavlo CMU SCS 15-415/615 37

T
IM

E

Lock Manager

Granted (T1→A)

Denied!

Released (T2→A)

Released (T1→A)

Granted (T2→A)

CMU SCS

Two-Phase Locking

• 2PL on its own is sufficient to guarantee
conflict serializability (i.e., schedules whose
precedence graph is acyclic), but, it is
subject to cascading aborts.

Faloutsos/Pavlo CMU SCS 15-415/615 38

Growing Phase Shrinking Phase

TIME

CMU SCS

2PL – Cascading Aborts

Faloutsos/Pavlo CMU SCS 15-415/615 39

T
IM

E

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
ABORT

T1 T2
BEGIN

X-LOCK(A)
R(A)
W(A)
 ⋮

Schedule

This is a permissible
schedule in 2PL, but we

have to abort T2 too.

This is all wasted work!

CMU SCS

2PL Observations

• There are schedules that are serializable but
would not be allowed by 2PL.

• Locking limits concurrency.
• May lead to deadlocks.
• May still have “dirty reads”

– Solution: Strict 2PL

Faloutsos/Pavlo CMU SCS 15-415/615 40

CMU SCS

Strict Two-Phase Locking

• The txn is not allowed to acquire/upgrade
locks after the growing phase finishes.

• Allows only conflict serializable schedules,
but it is actually stronger than needed.

Faloutsos/Pavlo CMU SCS 15-415/615 41

Growing Phase Shrinking Phase

TIME

Release all locks
at end of txn.

CMU SCS

Strict Two-Phase Locking

• A schedule is strict if a value written by a
txn is not read or overwritten by other txns
until that txn finishes.

• Advantages:
– Recoverable.
– Do not require cascading aborts.
– Aborted txns can be undone by just restoring

original values of modified tuples.

Faloutsos/Pavlo CMU SCS 15-415/615 42

CMU SCS

Examples

• T1: Move $50 from Andy’s account to his
bookie’s account.

• T2: Compute the total amount in all
accounts and return it to the application.

• Legend:
– A → Andy’s account.
– B → The bookie’s account.

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Non-2PL Example

44

T
IM

E

A=100, B=100
Initial State

150
T2 Output

BEGIN
X-LOCK(A)
R(A)
A=A-50
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+50
W(B)
UNLOCK(B)
COMMIT

T1 T2
BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO(A+B)
COMMIT

CMU SCS

2PL Example

45

T
IM

E

BEGIN
X-LOCK(A)
R(A)
A=A-50
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+50
W(B)
UNLOCK(B)
COMMIT

T1 T2
BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
ECHO(A+B)
COMMIT

A=100, B=100
Initial State

200
T2 Output

CMU SCS

Strict 2PL Example

46

T
IM

E

BEGIN
X-LOCK(A)
R(A)
A=A-50
W(A)
X-LOCK(B)
R(B)
B=B+50
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

T1 T2
BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO(A+B)
UNLOCK(A)
UNLOCK(B)
COMMIT

A=100, B=100
Initial State

200
T2 Output

CMU SCS

Strict Two-Phase Locking

• Txns hold all of their locks until commit.
• Good:

– Avoids “dirty reads” etc
• Bad:

– Limits concurrency even more
– And still may lead to deadlocks

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

All Schedules

Avoid
Cascading
Abort

Schedules

Faloutsos/Pavlo 15-415/615 48

View Serializable

Conflict Serializable

Strict 2PL

Serial

CMU SCS

Today’s Class

• Serializability
• Two-Phase Locking
• Deadlocks
• Lock Granularities
• Locking in B+Trees

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU SCS

Two-Phase Locking

• 2PL seems to work well.
• Is that enough? Can we just go home now?

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

T1 T2
BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

Shit Just Got Real

Faloutsos/Pavlo CMU SCS 15-415/615 51

T
IM

E

Lock Manager

Granted (T1→A)

Denied!

Granted (T2→B)

Denied!

CMU SCS

Deadlocks

• Deadlock: Cycle of transactions waiting for
locks to be released by each other.

• Two ways of dealing with deadlocks:
– Deadlock prevention
– Deadlock detection

• Many systems just punt and use timeouts
– What are the dangers with this approach?

Faloutsos/Pavlo CMU SCS 15-415/615 52

CMU SCS

Deadlock Detection

• The DBMS creates a waits-for graph:
– Nodes are transactions
– Edge from Ti to Tj if Ti is waiting for Tj to

release a lock
• The system periodically check for cycles in

waits-for graph.

Faloutsos/Pavlo CMU SCS 15-415/615 53

CMU SCS

Deadlock Detection

Faloutsos/Pavlo CMU SCS 15-415/615 54

T1 T2

Waits-for Graph

T3

T
IM

E

BEGIN
S-LOCK(A)
S-LOCK(D)

S-LOCK(B)

T1 T2
BEGIN

X-LOCK(B)

X-LOCK(C)

Schedule
T3

BEGIN

S-LOCK(C)

X-LOCK(A)

CMU SCS

Deadlock Detection

• How often should we run the algorithm?
• How many txns are typically involved?
• What do we do when we find a deadlock?

Faloutsos/Pavlo CMU SCS 15-415/615 55

CMU SCS

Deadlock Handling

• Q: What do we do?
• A: Select a “victim” and

rollback it back to break the
deadlock.

Faloutsos/Pavlo CMU SCS 15-415/615 56

CMU SCS

Deadlock Handling

• Q: Which one do we choose?
• A: It depends…

– By age (lowest timestamp)
– By progress (least/most queries executed)
– By the # of items already locked
– By the # of txns that we have to rollback with it

• We also should consider the # of times a txn
has been restarted in the past.

Faloutsos/Pavlo CMU SCS 15-415/615 57

CMU SCS

Deadlock Handling

• Q: How far do we rollback?
• A: It depends…

– Completely
– Minimally (i.e., just enough to release locks)

Faloutsos/Pavlo CMU SCS 15-415/615 58

CMU SCS

Deadlock Prevention

• When a txn tries to acquire a lock that is held
by another txn, kill one of them to prevent a
deadlock.

• No waits-for graph or detection algorithm.

Faloutsos/Pavlo CMU SCS 15-415/615 59

CMU SCS

Deadlock Prevention

• Assign priorities based on timestamps:
– Older → higher priority (e.g., T1 > T2)

• Two different prevention policies:
– Wait-Die: If T1 has higher priority, T1 waits for

T2; otherwise T1 aborts (“old wait for young”)
– Wound-Wait: If T1 has higher priority, T2

aborts; otherwise T1 waits (“young wait for old”)

Faloutsos/Pavlo CMU SCS 15-415/615 60

CMU SCS

Deadlock Prevention

Faloutsos/Pavlo CMU SCS 15-415/615 61

BEGIN

X-LOCK(A)
 ⋮

T1 T2

BEGIN
X-LOCK(A)
 ⋮

BEGIN
X-LOCK(A)
 ⋮

T1 T2

BEGIN
X-LOCK(A)
 ⋮

Wait-Die
T1 waits

Wound-Wait
T2 aborted

Wait-Die
T2 aborted

Wound-Wait
T2 waits

CMU SCS

Deadlock Prevention

• Q: Why do these schemes guarantee no
deadlocks?

• A: Only one “type” of direction allowed.

• Q: When a transaction restarts, what is its
(new) priority?

• A: Its original timestamp. Why?

Faloutsos/Pavlo CMU SCS 15-415/615 62

CMU SCS

Today’s Class

• Serializability
• Two-Phase Locking
• Deadlocks
• Lock Granularities
• Locking in B+Trees

Faloutsos/Pavlo CMU SCS 15-415/615 63

CMU SCS

Lock Granularities

• When we say that a txn acquires a “lock”,
what does that actually mean?
– On a field? Record? Page? Table?

• Ideally, each txn should obtain fewest
number of locks that is needed…

Faloutsos/Pavlo CMU SCS 15-415/615 64

CMU SCS

Database Lock Hierarchy

Faloutsos/Pavlo CMU SCS 15-415/615 65

Database

Table 1 Table 2

Tuple 1

Attr 1

Tuple 2

Attr 2

Tuple n …

Attr n …

CMU SCS

Example

• T1: Get the balance of Andy’s shady off-
shore bank account.

• T2: Increase all account balances by 1%.

• Q: What locks should they obtain?

Faloutsos/Pavlo CMU SCS 15-415/615 66

CMU SCS

Example

• Q: What locks should they obtain?
• A: Multiple

– Exclusive + Shared for leafs of lock tree.
– Special Intention locks for higher levels

Faloutsos/Pavlo CMU SCS 15-415/615 67

CMU SCS

Intention Locks

• Intention locks allow a higher level node to
be locked in S or X mode without having to
check all descendent nodes.

• If a node is in an intention mode, then
explicit locking is being done at a lower
level in the tree.

Faloutsos/Pavlo CMU SCS 15-415/615 68

CMU SCS

Intention Locks

• Intention-Shared (IS): Indicates explicit
locking at a lower level with shared locks.

• Intention-Exclusive (IX): Indicates locking
at lower level with exclusive or shared locks.

Faloutsos/Pavlo CMU SCS 15-415/615 69

CMU SCS

Intention Locks

• Shared+Intention-Exclusive (SIX): The
subtree rooted by that node is locked
explicitly in shared mode and explicit
locking is being done at a lower level with
exclusive-mode locks.

Faloutsos/Pavlo CMU SCS 15-415/615 70

CMU SCS

Compatibility Matrix

Faloutsos/Pavlo CMU SCS 15-415/615 71

IS IX S SIX X
IS ✔ ✔ ✔ ✔ X
IX ✔ ✔ X X X

S ✔ X ✔ X X
SIX ✔ X X X X

X X X X X X

T1
 H

ol
ds

T2 Wants

CMU SCS

Multiple Granularity Protocol

Faloutsos/Pavlo CMU SCS 15-415/615 72

IS

S IX

SIX

X
P

ri
vi

le
ge

s

Stronger

Weaker

CMU SCS

Locking Protocol

• Each txn obtains appropriate lock at highest
level of the database hierarchy.

• To get S or IS lock on a node, the txn must
hold at least IS on parent node.
– What if txn holds SIX on parent? S on parent?

• To get X, IX, or SIX on a node, must hold
at least IX on parent node.

Faloutsos/Pavlo CMU SCS 15-415/615 73

CMU SCS

Example – Two-level Hierarchy

Faloutsos/Pavlo CMU SCS 15-415/615 74

Table R

Tuple 2 Tuple 1 Tuple n …

T1

S
T1

IS
T1

T2

X
T2 IX

T2

Read Write

Read a single record in R. Update a single record in R.

CMU SCS

Example – Threesome

• Assume three txns execute at same time:
– T1: Scan R and update a few tuples.
– T2: Scan a portion of tuples in R.
– T3: Scan all tuples in R.

Faloutsos/Pavlo CMU SCS 15-415/615 75

Table R

Tuple 2 Tuple 1 Tuple n …

CMU SCS

Example – Threesome

Faloutsos/Pavlo CMU SCS 15-415/615 76

Table R

Tuple 1 Tuple n …

T1

S
T2

SIX
T1

T2

X
T1 IS

T2

Read Read+Write

T3

Tuple 2

Read

S
T3

Read

Scan R and update a few tuples. Scan all tuples in R. Scan a portion of tuples in R.

CMU SCS

Example – Threesome

• T1: Get an SIX lock on R, then get X lock
on tuples that are updated.

• T2: Get an IS lock on R, and repeatedly get
an S lock on tuples of R.

• T3: Two choices:
– T3 gets an S lock on R.
– OR, T3 could behave like T2; can use lock

escalation to decide which.

Faloutsos/Pavlo CMU SCS 15-415/615 77

CMU SCS

Lock Escalation

• Lock escalation dynamically asks for
coarser-grained locks when too many low
level locks acquired.

• Reduces the number of requests that the
lock manager has to process.

Faloutsos/Pavlo CMU SCS 15-415/615 78

CMU SCS

Multiple Lock Granularities

• Useful in practice as each txn only needs a
few locks.

• Intention locks help improve concurrency:
– Intention-Shared (IS): Intent to get S lock(s)

at finer granularity.
– Intention-Exclusive (IX): Intent to get X

lock(s) at finer granularity.
– Shared+Intention-Exclusive (SIX): Like S

and IX at the same time.
Faloutsos/Pavlo CMU SCS 15-415/615 79

CMU SCS

Today’s Class

• Serializability
• Two-Phase Locking
• Deadlocks
• Lock Granularities
• Locking in B+Trees

Faloutsos/Pavlo CMU SCS 15-415/615 80

CMU SCS

Locking in B+Trees

• Q: What about locking indexes?
• A: They are not quite like other database

elements so we can treat them differently:
– It’s okay to have non-serializable concurrent

access to an index as long as the accuracy of the
index is maintained.

Faloutsos/Pavlo CMU SCS 15-415/615 81

CMU SCS

Example

• T1 wants to insert in H
• T2 wants to insert in I
• Q: Why not plain 2PL?
• A: Because txns have

to hold on to their
locks for too long!

Faloutsos/Pavlo CMU SCS 15-415/615 82

G I H

F E D

C B

A

...

...

X
T1

X
T1

X
T1

X
T1

root

CMU SCS

Lock Crabbing

• Improves concurrency for B+Trees.
• Get lock for parent; get lock for child;

release lock for parent if “safe”.
• Safe Nodes: Any node that won’t split or

merge when updated.
– Not full (on insertion)
– More than half-full (on deletion)

Faloutsos/Pavlo CMU SCS 15-415/615 83

CMU SCS

Lock Crabbing

• Search: Start at root and go down;
repeatedly,
– S lock child
– then unlock parent

• Insert/Delete: Start at root and go down,
obtaining X locks as needed. Once child is
locked, check if it is safe:
– If child is safe, release all locks on ancestors.

Faloutsos/Pavlo CMU SCS 15-415/615 84

CMU SCS

Example #1 – Search 38

Faloutsos/Pavlo CMU SCS 15-415/615 85

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

S

S

S

S

It’s safe to release the
lock on A.

CMU SCS

38 41

Example #2 – Delete 38

Faloutsos/Pavlo CMU SCS 15-415/615 86

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

X

X

X

X We know that C will not
need to merge with F, so
it’s safe to release A+B.

We may need to
coalesce B, so we can’t
release the lock on A.

CMU SCS

38 41

Example #3 – Insert 45

Faloutsos/Pavlo CMU SCS 15-415/615 87

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

X

X

X

X

E has room so it won’t
split, so we can
release B+C.

We know that if C needs
to split, B has room so
it’s safe to release A.

CMU SCS

38 41

Example #4 – Insert 25

Faloutsos/Pavlo CMU SCS 15-415/615 88

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

F C

G H I D E

35 10

X

X

X

X
25

31
We need to split H so we
need to keep the lock on

its parent node.

CMU SCS

Problems

• Q: What was the first step that all of the
update examples did on the B+Tree?

Faloutsos/Pavlo CMU SCS 15-415/615 89

20 A
X

Delete 38

20 A
X

Insert 45

20 A
X

Insert 25

CMU SCS

Problems

• Q: What was the first step that all of the
update examples did on the B+Tree?

• A: Locking the root every time becomes a
bottleneck with higher concurrency.

• Can we do better?

Faloutsos/Pavlo CMU SCS 15-415/615 90

CMU SCS

Better Tree Locking Algorithm

• Main Idea:
– Assume that the leaf is ‘safe’, and use S-locks

& crabbing to reach it, and verify.
– If leaf is not safe, then do previous algorithm.

• Rudolf Bayer, Mario Schkolnick:
Concurrency of Operations on B-Trees.
Acta Inf. 9: 1-21 (1977)

Faloutsos/Pavlo CMU SCS 15-415/615 91

CMU SCS

38 41

Example #2 – Delete 38

Faloutsos/Pavlo CMU SCS 15-415/615 92

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

F C

G H I D E

35 10

S

S

S

X

D will not need to
coalesce, so we’re safe!

CMU SCS

38 41

Example #4 – Insert 25

Faloutsos/Pavlo CMU SCS 15-415/615 93

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

F C

G H I D E

35 10

S

S

S

X
25

We need to split H so we
have to restart and re-
execute like before.

CMU SCS

Better Tree Locking Algorithm

• Search: Same as before.
• Insert/Delete:

– Set locks as if for search, get to leaf, and set X
lock on leaf.

– If leaf is not safe, release all locks, and restart
txn using previous Insert/Delete protocol.

• Gambles that only leaf node will be
modified; if not, S locks set on the first pass
to leaf are wasteful.

Faloutsos/Pavlo CMU SCS 15-415/615 94

CMU SCS

Additional Points

• Q: Which order to release locks in multiple-
granularity locking?

• A: From the bottom up

• Q: Which order to release locks in tree-
locking?

• A: As early as possible to maximize
concurrency.
 Faloutsos/Pavlo CMU SCS 15-415/615 95

CMU SCS

Locking in Practice

• You typically don’t set locks manually.
• Sometimes you will need to provide the

DBMS with hints to help it to improve
concurrency.

• Also useful for doing major changes.

Faloutsos/Pavlo CMU SCS 15-415/615 96

CMU SCS

LOCK TABLE

• Explicitly locks a table.
• Not part of the SQL standard.

– Postgres Modes: SHARE, EXCLUSIVE
– MySQL Modes: READ, WRITE

Faloutsos/Pavlo CMU SCS 15-415/615 97

LOCK TABLE <table> IN <mode> MODE;
Postgres

LOCK TABLE <table> <mode>;
MySQL

CMU SCS

SELECT...FOR UPDATE

• Perform a select and then sets an exclusive
lock on the matching tuples.

• Can also set shared locks:
– Postgres: FOR SHARE
– MySQL: LOCK IN SHARE MODE

Faloutsos/Pavlo CMU SCS 15-415/615 98

SELECT * FROM <table>
 WHERE <qualification> FOR UPDATE;

CMU SCS

Concurrency Control Summary

• Conflict Serializability ↔ Correctness
• Automatically correct interleavings:

– Locks + protocol (2PL, S2PL ...)
– Deadlock detection + handling
– Deadlock prevention

Faloutsos/Pavlo CMU SCS 15-415/615 99

