
15-415/615 Faloutsos & Pavlo

1

CMU SCS

15-415/615 Faloutsos & Pavlo 1

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 – DB Applications

Lecture #13: Query Evaluation
(R&G ch. 12 and 14)

CMU SCS

15-415/615 Faloutsos & Pavlo 2

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

CMU SCS

15-415/615 Faloutsos & Pavlo 3

Outline

•  (12.1) Catalog
•  (12.2) Intro to Operator Evaluation
•  (12.3) Algo’s for Relational Operations
•  (12.6) Typical Q-optimizer
•  (14.3.2) Hashing

CMU SCS

15-415/615 Faloutsos & Pavlo 4

Cost-based Query Sub-System

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

15-415/615 Faloutsos & Pavlo

2

CMU SCS

15-415/615 Faloutsos & Pavlo 5

Schema

•  What would you store?

•  How?

CMU SCS

15-415/615 Faloutsos & Pavlo 6

Schema

•  What would you store?
•  A: info about tables, attributes, indices,

users
•  How?
•  A: in tables! eg.,

– Attribute_Cat (attr_name: string, rel_name:
string; type: string; position: integer)

CMU SCS

15-415/615 Faloutsos & Pavlo 7

Statistics
•  Why do we need them?

•  What would you store?

CMU SCS

15-415/615 Faloutsos & Pavlo 8

Statistics
•  Why do we need them?
•  A: To estimate cost of query plans
•  What would you store?

–  NTuples(R): # records for table R
–  NPages(R): # pages for R
–  NKeys(I): # distinct key values for index I
–  INPages(I): # pages for index I
–  IHeight(I): # levels for I
–  ILow(I), IHigh(I): range of values for I
–  ...

15-415/615 Faloutsos & Pavlo

3

CMU SCS

15-415/615 Faloutsos & Pavlo 9

Outline

•  (12.1) Catalog
•  (12.2) Intro to Operator Evaluation
•  (12.3) Algo’s for Relational Operations
•  (12.6) Typical Q-optimizer
•  (14.3.2) Hashing

CMU SCS

15-415/615 Faloutsos & Pavlo 10

Operator evaluation

3 methods we’ll see often:

CMU SCS

15-415/615 Faloutsos & Pavlo 11

Operator evaluation

3 methods we’ll see often:
•  indexing
•  iteration (= seq. scanning)
•  partitioning (sorting and hashing)

CMU SCS

15-415/615 Faloutsos & Pavlo 12

``Access Path’’

•  Eg., index (tree, or hash), or scanning
•  Selectivity of an access path:

– % of pages we retrieve

•  eg., selectivity of a hash index, on range
query: 100% (no reduction!)

15-415/615 Faloutsos & Pavlo

4

CMU SCS

15-415/615 Faloutsos & Pavlo 13

Outline

•  (12.1) Catalog
•  (12.2) Intro to Operator Evaluation
•  (12.3) Algo’s for Relational Operations
•  (12.6) Typical Q-optimizer
•  (14.3.2) Hashing

CMU SCS

15-415/615 Faloutsos & Pavlo 14

Algorithms

•  selection:
•  projection
•  join
•  group by
•  order by

CMU SCS

15-415/615 Faloutsos & Pavlo 15

Algorithms

•  selection: scan; index
•  projection (dup. elim.):
•  join
•  group by
•  order by

CMU SCS

15-415/615 Faloutsos & Pavlo 16

Algorithms

•  selection: scan; index
•  projection (dup. elim.): hashing; sorting
•  join
•  group by
•  order by

15-415/615 Faloutsos & Pavlo

5

CMU SCS

15-415/615 Faloutsos & Pavlo 17

Algorithms

•  selection: scan; index
•  projection (dup. elim.): hashing; sorting
•  join: many ways (loops, sort-merge, etc)
•  group by
•  order by

CMU SCS

15-415/615 Faloutsos & Pavlo 18

Algorithms

•  selection: scan; index
•  projection (dup. elim.): hashing; sorting
•  join: many ways (loops, sort-merge, etc)
•  group by: hashing; sorting
•  order by: sorting

CMU SCS

15-415/615 Faloutsos & Pavlo 19

Iterator Interface
SELECT DISTINCT name, gpa
 FROM Students

HeapScan

Sort

Distinct

name, gpa

name, gpa

name, gpa

Optimizer

CMU SCS

15-415/615 Faloutsos & Pavlo 20

iterator

Iterators
•  Relational operators: subclasses of iterator:

class iterator {
 void init();
 tuple next();
 void close();
 iterator &inputs[];

 // additional state goes here
}

•  iterators can be cascaded

15-415/615 Faloutsos & Pavlo

6

CMU SCS

15-415/615 Faloutsos & Pavlo 21

Outline

•  (12.1) Catalog
•  (12.2) Intro to Operator Evaluation
•  (12.3) Algo’s for Relational Operations
•  (12.6) Typical Q-optimizer
•  (14.3.2) Hashing

CMU SCS

15-415/615 Faloutsos & Pavlo 22

Q-opt steps

•  bring query in internal form (eg., parse tree)
•  … into ‘canonical form’ (syntactic q-opt)
•  generate alt. plans
•  estimate cost; pick best

CMU SCS

15-415/615 Faloutsos & Pavlo 23

Q-opt - example

select name

from STUDENT, TAKES

where c-id=‘415’ and

STUDENT.ssn=TAKES.ssn

STUDENT TAKES

σ	

π	

CMU SCS

15-415/615 Faloutsos & Pavlo 24

Q-opt - example

STUDENT TAKES

σ	

π	

STUDENT TAKES

σ	

π	

 Canonical form

15-415/615 Faloutsos & Pavlo

7

CMU SCS

15-415/615 Faloutsos & Pavlo 25

Q-opt - example

STUDENT TAKES

σ	

π	

Index; seq scan

Hash join;
merge join;
nested loops;

CMU SCS

15-415/615 Faloutsos & Pavlo 26

Outline

•  (12.1) Catalog
•  (12.2) Intro to Operator Evaluation
•  (12.3) Algo’s for Relational Operations
•  (12.6) Typical Q-optimizer
•  (14.3.2) Hashing

CMU SCS

15-415/615 Faloutsos & Pavlo 27

Grouping; Duplicate Elimination

select distinct ssn
from TAKES

•  (Q1: what does it do, in English?)
•  Q2: how to execute it?

CMU SCS

15-415/615 Faloutsos & Pavlo 28

An Alternative to Sorting:
Hashing!

•  Idea:
–  maybe we don’t need the order of the sorted data
–  e.g.: forming groups in GROUP BY
–  e.g.: removing duplicates in DISTINCT

•  Hashing does this!
–  And may be cheaper than sorting! (why?)
–  But what if table doesn’t fit in memory??

15-415/615 Faloutsos & Pavlo

8

CMU SCS

15-415/615 Faloutsos & Pavlo 29

General Idea

•  Two phases:
– Phase1: Partition: use a hash function hp to split

tuples into partitions on disk.
•  We know that all matches live in the same partition.
•  Partitions are “spilled” to disk via output buffers

CMU SCS

15-415/615 Faloutsos & Pavlo 30

Two Phases
•  Partition:

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash
function

hp
B-1

Partitions

1

2

B-1

.

CMU SCS

15-415/615 Faloutsos & Pavlo 31

General Idea

•  Two phases:
– Phase 2: ReHash: for each partition on disk

•  (assuming it fits in memory)
•  read it into memory and build a main-memory hash

table based on a hash function hr

•  Then go through each bucket of this hash table to
bring together matching tuples

CMU SCS

15-415/615 Faloutsos & Pavlo 32

Two Phases
•  Rehash:

Partitions
Hash table for partition

Ri (ki <= B pages)

B main memory buffers Disk

hash
fn
hr 1

B-1

B

Ri

15-415/615 Faloutsos & Pavlo

9

CMU SCS

15-415/615 Faloutsos & Pavlo 33

Analysis
•  How big of a table can we hash using this

approach?
–  B-1 “spill partitions” in Phase 1
–  Each should be no more than B blocks big

CMU SCS

15-415/615 Faloutsos & Pavlo 34

Analysis
•  How big of a table can we hash using this

approach?
–  B-1 “spill partitions” in Phase 1
–  Each should be no more than B blocks big
–  Answer: B(B-1).

•  ie., a table of N blocks needs about sqrt(N) buffers
–  What assumption do we make?

CMU SCS

15-415/615 Faloutsos & Pavlo 35

Analysis
•  How big of a table can we hash using this

approach?
–  B-1 “spill partitions” in Phase 1
–  Each should be no more than B blocks big
–  Answer: B(B-1).

•  ie., a table of N blocks needs about sqrt(N) buffers
–  Note: assumes hash function distributes records evenly!

•  use a ‘fudge factor’ f >1 for that: we need
B ~ sqrt(f * N)

CMU SCS

15-415/615 Faloutsos & Pavlo 36

Analysis
•  Have a bigger table? Recursive

partitioning!
–  In the ReHash phase, if a partition b is bigger

than B, then recurse:
–  pretend that b is a table we need to hash, run

the Partitioning phase on b, and then the
ReHash phase on each of its (sub)partitions

15-415/615 Faloutsos & Pavlo

10

CMU SCS

15-415/615 Faloutsos & Pavlo 37

Recursive partitioning

B main memory buffers Disk Disk

Original
Relation OUTPUT

2
INPUT

1

hash
function

hp B-1

Partitions

1

2

B-1

.

partition b > B *
Hash table for

partition
Ri (ki <= B pages)

B main memory
buffers

hash
fn
hr

1

B-1

B

PHASE 1* PHASE 2

CMU SCS

15-415/615 Faloutsos & Pavlo 38

Real story

•  Partition + Rehash
•  Performance is very slow!
•  What could have gone wrong?

break

CMU SCS

15-415/615 Faloutsos & Pavlo 39

Real story

•  Partition + Rehash
•  Performance is very slow!
•  What could have gone wrong?
•  Hint: some buckets are empty; some others

are way over-full.

break

CMU SCS

15-415/615 Faloutsos & Pavlo 40

Hashing vs. Sorting
•  Which one needs more buffers?

15-415/615 Faloutsos & Pavlo

11

CMU SCS

15-415/615 Faloutsos & Pavlo 41

Hashing vs. Sorting
•  Recall: can hash a table of size N blocks

in sqrt(N) space
•  How big of a table can we sort in 2 passes?

– Get N/B sorted runs after Pass 0
– Can merge all runs in Pass 1 if N/B ≤ B-1

•  Thus, we (roughly) require: N ≤ B2

•  We can sort a table of size N blocks in about space
sqrt(N)

– Same as hashing!

CMU SCS

15-415/615 Faloutsos & Pavlo 42

Hashing vs. Sorting

•  Choice of sorting vs. hashing is subtle and
depends on optimizations done in each case …
–  Already discussed some optimizations for sorting:

CMU SCS

15-415/615 Faloutsos & Pavlo 43

Hashing vs. Sorting

•  Choice of sorting vs. hashing is subtle and
depends on optimizations done in each case …
–  Already discussed some optimizations for sorting:

•  (Heapsort in Pass 0 for longer runs)
•  Chunk I/O into large blocks to amortize seek+RD costs
•  Double-buffering to overlap CPU and I/O

–  Another optimization when using sorting for
aggregation:

•  “Early aggregation” of records in sorted runs
–  We will discuss some optimizations for hashing next…

CMU SCS

15-415/615 Faloutsos & Pavlo 44

Hashing: We Can Do Better!

•  Combine the summarization into the hashing
process - How?

HashAgg

15-415/615 Faloutsos & Pavlo

12

CMU SCS

15-415/615 Faloutsos & Pavlo 45

Hashing: We Can Do Better!

•  Combine the summarization into the hashing
process - How?
–  During the ReHash phase, don’t store tuples, store

pairs of the form <GroupVals, RunningVals>
–  When we want to insert a new tuple into the hash table

•  If we find a matching GroupVals, just update the RunningVals
appropriately

•  Else insert a new <GroupVals, RunningVals> pair

HashAgg

select ssn, sum(credits)
from takes
group by ssn

(groupVal, runningVal)
(12345, 12)
(45678, 18)

CMU SCS

15-415/615 Faloutsos & Pavlo 46

Hashing: We Can Do Better!

•  Combine the summarization into the hashing
process

•  What’s the benefit?
–  Q: How many entries will we have to handle?
–  A: Number of distinct values of GroupVals columns

•  Not the number of tuples!!
–  Also probably “narrower” than the tuples

HashAgg

CMU SCS

15-415/615 Faloutsos & Pavlo 47

Even Better: Hybrid Hashing
•  What if B > sqrt(N)?
•  e.g., N=10,000, B=200
•  B=100 (actually, 101) would be enough for 2

passes
•  How could we use the extra 100 buffers?

B main memory buffers Disk Disk

Original
Relation OUTPUT

2

INPUT

1

hp 100

Partitions

1

2

100

. . .

101 200

CMU SCS

15-415/615 Faloutsos & Pavlo 48

Even Better: Hybrid Hashing
•  What if B > sqrt(N)?
•  e.g., N=10,000, B=200
•  B=100 (actually, 101) would be enough for 2

passes
•  How could we use the extra 100 buffers?

B main memory buffers Disk Disk

Original
Relation OUTPUT

2

INPUT

1

hp 100

Partitions

1

2

100

. . .

101 200

A: 1ph for first
partition;
2 for all others

15-415/615 Faloutsos & Pavlo

13

CMU SCS

15-415/615 Faloutsos & Pavlo 49

Even Better: Hybrid Hashing
•  Idea: hybrid! … keep 1st partition in memory

during phase 1!
–  Output its stuff

at the end of
Phase 1.

Partition 1

B main memory buffers Disk Disk

Original
Relation OUTPUT

3

INPUT

2

hp 100

Partitions

2

3

100

. . .
hr

100-buffer hashtable

1 100

CMU SCS

15-415/615 Faloutsos & Pavlo 50

Even Better: Hybrid Hashing
•  What if B=300? (and N=10,000, again)
•  i.e., 200 extra buffers?

CMU SCS

15-415/615 Faloutsos & Pavlo 51

Even Better: Hybrid Hashing
•  What if B=300? (and N=10,000, again)
•  i.e., 200 extra buffers?
•  A: keep the first 2 partitions in main memory

CMU SCS

15-415/615 Faloutsos & Pavlo 52

Even Better: Hybrid Hashing
•  What if B=150? (and N=10,000, again)
•  i.e., 50 extra buffers?

15-415/615 Faloutsos & Pavlo

14

CMU SCS

15-415/615 Faloutsos & Pavlo 53

Even Better: Hybrid Hashing
•  What if B=150? (and N=10,000, again)
•  i.e., 50 extra buffers?
•  A: keep half of the first bucket in memory

CMU SCS

15-415/615 Faloutsos & Pavlo 54

Hybrid hashing

•  can be used together with the
summarization idea

CMU SCS

15-415/615 Faloutsos & Pavlo 55

So, hashing’s better … right?

•  Any caveats?

CMU SCS

15-415/615 Faloutsos & Pavlo 56

So, hashing’s better … right?

•  Any caveats?
•  A1: sorting is better on non-uniform data
•  A2: ... and when sorted output is required

later.

Hashing vs. sorting:
•  Commercial systems use either or both

15-415/615 Faloutsos & Pavlo

15

CMU SCS

15-415/615 Faloutsos & Pavlo 57

Summary
•  Query processing architecture:

– Query optimizer translates SQL to a query plan
= graph of iterators

– Query executor “interprets” the plan

•  Hashing is a useful alternative to sorting for
dup. elim / group-by
– Both are valuable techniques for a DBMS

