Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 – DB Applications

Data Warehousing / Data Mining
(R&G, ch 25 and 26)
C. Faloutsos and A. Pavlo

Data mining - detailed outline

• Problem
• Getting the data: Data Warehouses, DataCubes, OLAP
• Supervised learning: decision trees
• Unsupervised learning
 – association rules

Problem

Given: multiple data sources
Find: patterns (classifiers, rules, clusters, outliers...)

Data Ware-housing

First step: collect the data, in a single place (= Data Warehouse)
How?
How often?
How about discrepancies / non-homegeneities?
Data Warehousing

First step: collect the data, in a single place (= Data Warehouse)
How? A: Triggers/Materialized views
How often? A: [Art!]
How about discrepancies / non-homegeneities? A: Wrappers/Mediators

OLAP

Problem: “is it true that shirts in large sizes sell better in dark colors?”

<table>
<thead>
<tr>
<th>sales</th>
<th>ci-d</th>
<th>p-id</th>
<th>Size</th>
<th>Color</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td></td>
<td></td>
<td>L</td>
<td>Blue</td>
<td>30</td>
</tr>
<tr>
<td>C20</td>
<td></td>
<td></td>
<td>XL</td>
<td>White</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C / S</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

Data Cubes

‘color’, ‘size’: DIMENSIONS
‘count’: MEASURE

<table>
<thead>
<tr>
<th>C / S</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>
DataCubes

'color', 'size': DIMENSIONS
'count': MEASURE

<table>
<thead>
<tr>
<th>C / S</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

DataCubes

'color', 'size': DIMENSIONS
'count': MEASURE

<table>
<thead>
<tr>
<th>C / S</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>
DataCubes

'color', 'size': DIMENSIONS
'count': MEASURE

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

DataCube

SQL query to generate DataCube:

• Naively (and painfully:)

  ```sql
  select size, color, count(*)
  from sales
  where p-id = 'shirt'
  group by size, color
  ```

• with 'cube by' keyword:

  ```sql
  select size, color, count(*)
  from sales
  where p-id = 'shirt'
  group by size, color
  ```

DataCubes issues:

Q1: How to store them (and/or materialize portions on demand)
Q2: Which operations to allow
DataCubes

DataCube issues:
Q1: How to store them (and/or materialize portions on demand) A: ROLAP/MOLAP
Q2: Which operations to allow A: roll-up, drill down, slice, dice
[More details: book by Han+Kamber]

DataCubes

Q1: How to store a dataCube?

<table>
<thead>
<tr>
<th>Color</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

...
DataCubes

Pros/Cons:
ROLAP strong points: (DSS, Metacube)

DataCubes

Pros/Cons:
ROLAP strong points: (DSS, Metacube)
• use existing RDBMS technology
• scale up better with dimensionality

DataCubes

Pros/Cons:
MOLAP strong points: (EssBase/hyperion.com)
• faster indexing
 (careful with: high-dimensionality; sparseness)
HOLAP: (MS SQL server OLAP services)
• detail data in ROLAP; summaries in MOLAP

DataCubes

Q1: How to store a dataCube
Q2: What operations should we support?
Q2: What operations should we support?

Roll-up

Drill-down

Slice
DataCubes

Q2: What operations should we support?

- Dice
- Roll-up
- Drill-down
- Slice
- Dice
- (Pivot/rotate; drill-across; drill-through
- top N
- moving averages, etc)

D/W - OLAP - Conclusions

- D/W: copy (summarized) data + analyze
- OLAP - concepts:
 - DataCube
 - R/M/H-OLAP servers
 - ‘dimensions’; ‘measures’

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
- Unsupervised learning
 - association rules
 - (clustering)
Decision trees - Problem

<table>
<thead>
<tr>
<th>Age</th>
<th>Chol-level</th>
<th>Gender</th>
<th>...</th>
<th>CLASS-1D</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>150</td>
<td>M</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

??

Decision trees

- Pictorially, we have

num. attr#2 (eg., chol-level)

num. attr#1 (eg., ‘age’)

Decision trees

- and we want to label ‘?’

num. attr#2 (eg., chol-level)

num. attr#1 (eg., ‘age’)

Decision trees

- so we build a decision tree:

num. attr#2 (eg., chol-level)

num. attr#1 (eg., ‘age’)

Decision trees

- so we build a decision tree:

```
+         N
  Y  +  Y
  N  N
  chol. <40  age<50
  +   +   +
  -   -   -
...
```

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
 - problem
 - approach
 - scalability enhancements
- Unsupervised learning
 - association rules
 - (clustering)

Decision trees

- Typically, two steps:
 - tree building
 - tree pruning (for over-training/over-fitting)

Tree building

- How?

```
+  +  +
+  -  -
+  +  -
```

```
num. attr#1 (e.g., 'age')
```

```
+  +  +
+  -  -
+  +  -
```

```
num. attr#2 (e.g., chol-level)
```
Tree building

• How?
 • A: Partition, recursively - pseudocode:

  ```
  Partition ( Dataset S)
  if all points in S have same label
  then return
  evaluate splits along each attribute A
  pick best split, to divide S into S1 and S2
  Partition(S1); Partition(S2)
  ```

• Q1: how to introduce splits along attribute A_i
• Q2: how to evaluate a split?

• A1:
 – for num. attributes:
 • binary split, or
 • multiple split
 – for categorical attributes:
 • compute all subsets (expensive!), or
 • use a greedy algo
Tree building

- Q1: how to introduce splits along attribute A_i
- Q2: how to evaluate a split?
 - A: by how close to uniform each subset is - i.e., we need a measure of uniformity:

```
entropy: $H(p^+, p^-)
```

Any other measure?

```
'gini' index: $1 - p^+ \cdot p^-
```

(How about multiple labels?)
Tree building

Intuition:
- entropy: \#bits to encode the class label
- gini: classification error, if we randomly guess ‘+’ with prob. \(p_+ \)

Thus, we choose the split that reduces entropy/classification-error the most: Eg.:

Before split: we need
\[(n_+ + n_-) \times H(p_+, p_-) = (7+6) \times H(7/13, 6/13)\]
bits total, to encode all the class labels

After the split we need:
- 0 bits for the first half and
- \((2+6) \times H(2/8, 6/8)\) bits for the second half

Tree pruning

• What for?

num. attr#2 (eg., chol-level)

num. attr#1 (eg., ‘age’)
Tree pruning

Shortcut for scalability: DYNAMIC pruning:
• stop expanding the tree, if a node is ‘reasonably’ homogeneous
 – ad hoc threshold [Agrawal+, vldb92]
 – (Minimum Description Language (MDL) criterion (SLIQ) [Mehta+, edbt96])

Tree pruning

• Q: How to do it?
 • A1: use a ‘training’ and a ‘testing’ set - prune nodes that improve classification in the ‘testing’ set. (Drawbacks?)
 • (A2: or, rely on MDL (= Minimum Description Language))

Outline

• Problem
• Getting the data: Data Warehouses, DataCubes, OLAP
• Supervised learning: decision trees
 – problem
 – approach
 – scalability enhancements
• Unsupervised learning
 – association rules
 – (clustering)

Scalability enhancements

• Interval Classifier [Agrawal+,vldb92]: dynamic pruning
• SLIQ: dynamic pruning with MDL; vertical partitioning of the file (but label column has to fit in core)
• SPRINT: even more clever partitioning
Conclusions for classifiers

- Classification through trees
- Building phase - splitting policies
- Pruning phase (to avoid over-fitting)
- For scalability:
 - dynamic pruning
 - clever data partitioning

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
 - problem
 - approach
 - scalability enhancements
- Unsupervised learning
 - association rules
 - (clustering)

Association rules - idea

[Agrawal+SIGMOD93]
- Consider ‘market basket’ case:
 - (milk, bread)
 - (milk)
 - (milk, chocolate)
 - (milk, bread)
- Find ‘interesting things’, eg., rules of the form:
 - milk, bread -> chocolate | 90%

Association rules - idea

In general, for a given rule

Ij, Ik, ..., Im -> Ix | c

‘c’ = ‘confidence’ (how often people by Ix, given that they have bought Ij, ..., Im)

‘s’ = support: how often people buy Ij, ..., Im, Ix
Association rules - idea

Problem definition:
• given
 – a set of ‘market baskets’ (=binary matrix, of N rows/baskets and M columns/products)
 – min-support ‘s’ and
 – min-confidence ‘c’
• find
 – all the rules with higher support and confidence

Closely related concept: “large itemset”
 \(I_j, I_k, \ldots I_m, I_x \)
is a ‘large itemset’, if it appears more than ‘min-support’ times

Observation: once we have a ‘large itemset’, we can find out the qualifying rules easily (how?)
Thus, let’s focus on how to find ‘large itemsets’

Naive solution: scan database once; keep \(2^{\|I\|} \) counters
Drawback?
Improvement?

Naive solution: scan database once; keep \(2^{\|I\|} \) counters
Drawback? \(2^{1000} \) is prohibitive...
Improvement? scan the db \(|I| \) times, looking for 1-, 2-, etc itemsets

Eg., for \(|I|=3 \) items only (A, B, C), we have
Association rules - idea

Anti-monotonicity property:
if an itemset fails to be 'large', so will every superset of it (hence all supersets can be pruned)

Sketch of the (famous!) 'a-priori' algorithm
Let \(L(i-1) \) be the set of large itemsets with \(i-1 \) elements
Let \(C(i) \) be the set of candidate itemsets (of size \(i \))

Compute \(L(1) \), by scanning the database.
repeat, for \(i=2,3,... \),
\textit{‘join’} \(L(i-1) \) with itself, to generate \(C(i) \)
two itemsets can be joined, if they agree on their first \(i-2 \) elements
\textbf{prune} the itemsets of \(C(i) \) (how?)
scan the db, finding the counts of the \(C(i) \) itemsets - set this to be \(L(i) \)
unless \(L(i) \) is empty, repeat the loop
Association rules - Conclusions

Association rules: a great tool to find patterns
• easy to understand its output
• fine-tuned algorithms exist

Overall Conclusions

• Data Mining = ‘Big Data’ Analytics = Business Intelligence:
 – of high commercial, government and research interest
• DM = DB+ ML+ Stat+Sys
• Data warehousing / OLAP: to get the data
• Tree classifiers (SLIQ, SPRINT)
• Association Rules - ‘a-priori’ algorithm
• (clustering: BIRCH, CURE, OPTICS)

Reading material

Additional references

• Jiawei Han and Micheline Kamber, Data Mining , Morgan Kaufman, 2001, chapters 2.2-2.3, 6.1-6.2, 7.3.5