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Lecture#15: Query Optimization 

CMU SCS 

Administrivia 

• HW5 is due Thursday March 17th. 
• You can pick up your mid-term from 

Marilyn Walgora’s office (GHC 8120). 
• Christos is out of the country. 
• No office hours next week. 
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Today’s Class 

• History & Background 
• Relational Algebra Equivalences 
• Plan Cost Estimation 
• Plan Enumeration 
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4 

Cost-based Query Sub-System 

  Query Parser 

Query Optimizer 

Plan 
Generator 

Plan Cost 
Estimator 

Catalog Manager 

Query Plan Evaluator 
Schema Statistics 

Select * 
From Blah B 

Where B.blah = blah 
Queries 
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Query Optimization 

• Remember that SQL is declarative. 
– User tells the DBMS what answer they want, 

not how to get the answer. 
• There can be a big difference in 

performance based on plan is used: 
– See last week: 5.7 days vs. 45 seconds 
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Quick DB History Lesson 
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1960s – IBM IMS 

• First database system. 
• Hierarchical data model. 
• Programmer-defined physical storage 

format. 
• Tuple-at-a-time queries. 
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Hierarchical Data Model 

SUPPLIER 
(sno,sname,scity,sstate) 

PART 
(pno,pname,psize,qty,price) 

3, “Dirty Rick’s Supplies”, 
New York, NY 

1001, “Battery Pack”, Large, 
500, $100 

Schema Instance 
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Hierarchical Data Model 

SUPPLIER 
(sno,sname,scity,sstate) 

PART 
(pno,pname,psize,qty,price) 

3, “Dirty Rick’s Supplies”, 
New York, NY 

1001, “Battery Pack”, Large, 
500, $100 

Schema Instance 

Duplicate Data 

No Independence 

Faloutsos/Pavlo 9 CMU SCS 15-415/615 

CMU SCS 

1970s – CODASYL 

• COBOL people got together and 
proposed a standard based on a 
network data model. 

• Tuple-at-a-time queries. 
– This forces the programmer to do manual 

query optimization. 
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Bachman 
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Supply 
(qty,price) 

Network Data Model 

SUPPLIER 
(sno,sname,scity,sstate) 

PART 
(pno,pname,psize) 

Supplies SuppliedBy 

Schema 
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Supply 
(qty,price) 

Network Data Model 

SUPPLIER 
(sno,sname,scity,sstate) 

PART 
(pno,pname,psize) 

Supplies SuppliedBy 

Schema 

Complex Queries 
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1970s – Relational Model 

• Ted Codd saw the maintenance 
overhead for IMS/Codasyl. 

• Proposed database abstraction based 
on relations: 
– Store database in simple data structures. 
– Access it through high-level language. 
– Physical storage left up to implementation. 
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IBM System R 

• Skunkworks project at IBM Research in 
San Jose to implement Codd’s ideas. 

• Had to figure out all of the things that we 
are discussing in this course themselves. 

• IBM never commercialized System R. 
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IBM System R 

• First implementation of a query optimizer. 
• People argued that the DBMS could never 

choose a query plan better than what a 
human could write. 

• A lot of the concepts from System R’s 
optimizer are still used today. 
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Today’s Class 

• History & Background 
• Relational Algebra Equivalences 
• Plan Cost Estimation 
• Plan Enumeration 
• Nested Sub-queries 
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Relational Algebra Equivalences 

• A query can be expressed in different 
ways. 

• The optimizer considers variations and 
choose the one with the lowest cost. 

• How do we know whether two queries are 
equivalent? 
– Equivalence Rules (chapter 15.3) 
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Relational Algebra Equivalences 

• Two relational algebra expressions are 
equivalent if they generate the same set of 
tuples. 
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Relational Algebra Equivalences 
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SELECT cname, amt 
  FROM customer, account 
 WHERE customer.acctno = 
       account.acctno 
   AND account.amt > 1000 

CUSTOMER ACCOUNT 

σ 
⨝ 

π 

acctno=acctno 

amt>1000 

cname, amt 

CUSTOMER ACCOUNT 

σ 

⨝ 
π 

acctno=acctno 

amt>1000 

cname, amt 
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Relational Algebra Equivalences 
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SELECT cname, amt 
  FROM customer, account 
 WHERE customer.acctno = 
       account.acctno 
   AND account.amt > 1000 

πcname, amt(σamt>1000 (customer⋈account)) 

πcname, amt(customer⋈(σamt>1000 (account)) 
= 
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Equivalence of Expressions 

• Q: How to prove a transf. rule? 
 

• Use relational tuple calculus to show that 
LHS = RHS: 
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)2()1()21( RRRR PPP σσσ ∪=∪
LHS RHS 
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Equivalence of Expressions 
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Equivalence of Expressions 
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Equivalence of Expressions 

• Q: How to disprove a rule? 
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)2()1()21( RRRR AAA πππ −=− X 
A B 

Christos squirrels R1 

Ø 

A B 

Christos knifefights 
R2 

A B 

Christos squirrels ≠ 
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Equivalence of Expressions 

• Selections: 
– Perform them early 
– Break a complex predicate, and push 

 
• Simplify a complex predicate  

– (X=Y AND Y=3) → X=3 AND Y=3 
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Equivalence of Expressions 

• Projections: 
– Perform them early 

• Smaller tuples 
• Fewer tuples (if duplicates are eliminated) 

– Project out all attributes except the ones 
requested or required (e.g., joining attr.) 
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Equivalence of Expressions 

• Joins: 
– Commutative, associative 

 
 
 

• Q: How many different orderings are there 
for an n-way join? 
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RSSR  =
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Equivalence of Expressions 

• Joins: How many different orderings are 
there for an n-way join? 

• A: Catalan number ~ 4^n  
– Exhaustive enumeration: too slow. 

• We’ll see in a second how an optimizer 
limits the search space...  
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Today’s Class 

• History & Background 
• Relational Algebra Equivalences 
• Plan Cost Estimation 
• Plan Enumeration 
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Query Optimization 

• Bring query in internal form (eg., parse 
tree) 

• … into “canonical form” (syntactic q-opt) 
• Generate alternative plans. 
• Estimate cost for each plan. 
• Pick the best one. 
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Cost Estimation 

• How long will a query take? 
– CPU:  Small cost; tough to estimate. 
– Disk: # of block transfers. 
– Network: # of messages 

• How many tuples will qualify? 
• What statistics do we need to keep? 
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Cost Estimation – Statistics 

• For each relation R we keep: 
– NR → # tuples 
– SR → size of tuple in bytes 
– V(A,R) → # of distinct values 

of attribute ‘A’ 
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… 

SR 

#2 
#3 

#NR 

#1 
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Derivable Statistics 

• FR → max# records/block 
• BR →  # blocks 
• SC(A,R) → selection cardinality  

avg# of records with A=given  
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… 

#2 

#3 

#BR 

#1 FR 

SR 
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Derivable Statistics 

• SC(A,R) → Selection Cardinality 
avg# of records with A=given 
→ NR / V(A,R) 

• Note that this assumes data uniformity 
– 10,000 students, 10 colleges – how many 

students in SCS? 
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Additional Statistics 

• For index i: 
– Fi → average fanout (~50-100) 
– HTi  → # levels of index i (~2-3) 

~ log(#entries)/log(Fi) 
– LBi # → blocks at leaf level 
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Statistics 

• Where do we store them? 
• How often do we update them? 
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Selection Statistics 

• We saw simple predicates (name=“Christos”) 
• How about more complex predicates, like 

– salary > 10000 
– age=30 AND jobTitle=“Costermonger” 

• What is their selectivity? 
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Selections – Complex Predicates 

• Selectivity sel(P) of predicate P: 
== fraction of tuples that qualify 
sel(P) = SC(P) / NR 
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Selection Cardinality 

# of tuples 
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Selections – Complex Predicates 

• Assume that V(rating, SAILORS) has 5 
distinct values (i.e., 0 to 4). 

• simple predicate P: A=constant 
– sel(A=constant) = 1/V(A,R) 
– eg., sel(rating=‘2’) = 1/5 

• What if V(A,R) is unknown?? 
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rating 

count 

4 0 

CMU SCS 

• Range Query: sel(rating >= ‘2’) 
• sel(A>a) = (Amax – a) / (Amax – Amin) 

 

Selections – Complex Predicates 
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rating 

count 

4 0 
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• Negation: sel(rating != ‘2’) 
– sel(not P) = 1 – sel(P) 

• Observation: selectivity ≈ probability 
 

Selections – Complex Predicates 
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rating 

count 

4 0 

‘P’ 
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Selections – Complex Predicates 

• Conjunction:  
– sel(rating = ‘2’ and name LIKE ‘C%’) 
– sel(P1 ⋀ P2) = sel(P1) · sel(P2) 
– INDEPENDENCE ASSUMPTION 
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P1 P2 
Not always true in 

practice! 
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Selections – Complex Predicates 

• Disjunction:  
– sel(rating = ‘2’ or name LIKE ‘C%’) 
– sel(P1 ⋁ P2) 

   = sel(P1) + sel(P2) – sel(P1 ⋁ P2) 
   = sel(P1) + sel(P2) – sel(P1) · sel(P2) 

– INDEPENDENCE ASSUMPTION, again 
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Selections – Complex Predicates 

• Disjunction, in general: 
– sel(P1 or P2 or … Pn) = 
– 1 - (1- sel(P1) ) · (1 - sel(P2) ) · … (1 - sel(Pn)) 

Faloutsos/Pavlo CMU SCS 15-415/615 44 

P1 P2 
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Selections – Summary 

• sel(A=constant) → 1/V(A,r)  
• sel(A>a) → (Amax – a) / (Amax – Amin) 
• sel(not P) → 1 – sel(P) 
• sel(P1 and P2) → sel(P1) ∙ sel(P2) 
• sel(P1 or P2) → sel(P1) + sel(P2) – 

                           sel(P1) · sel(P2)  
• sel(P1 or ... or Pn) = 1 - (1-sel(P1)) · ... · 

                                  (1-sel(Pn)) 
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Joins 

• Q: Given a join of R and S, what is the 
range of possible result sizes in #of tuples? 
– Hint: what if Rcols⋂ Scols = Ø?  
– Rcols⋂ Scols is a key for R and a foreign key in 

S? 
 

Faloutsos/Pavlo CMU SCS 15-415/615 46 

CMU SCS 

Joins 

• Q: Given a join of R and S, what is the 
range of possible result sizes in #of tuples? 
– Hint: what if Rcols⋂ Scols = Ø?  
– Rcols⋂ Scols is a key for R and a foreign key in 

S? 
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NR · NS 

≤ NS 
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Result Size Estimation for Joins 

• General case: Rcols⋂ Scols = {A} where A 
is not a key for either table. 

• Hint: for a given tuple of R,  how many 
tuples of S will it match? 
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Result Size Estimation for Joins 

• General case: Rcols⋂ Scols = {A} where A 
is not a key for either table. 
– Match each R-tuple with S-tuples: 

estSize ≈ NR · NS / V(A,S) 
– Symmetrically, for S: 

estSize ≈ NR · NS / V(A,R) 
• Overall:  

– estSize ≈ NR · NS / max( {V(A,S), V(A,R)} ) 
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Cost Estimations 

• Our formulas are nice but we assume that 
data values are uniformly distributed. 
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Uniform Approximation of D Distribution D 
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Cost Estimations 

• Our formulas are nice but we assume that 
data values are uniformly distributed. 
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Uniform Approximation of D Distribution D 

# of occurrences 

Distinct values of attribute 

CMU SCS 

Histograms 

• Allows the DBMS to have leverage better 
statistics about the data. 

Equiwidth Histogram ~ Quantiles Equiwidth Histogram 

Bucket 1 
Count=8 

Bucket 2 
Count=4 

Bucket 3 
Count=15 

Bucket 4 
Count=3 

Bucket 5 
Count=15 

Bucket 1 
Count=9 

Bucket 2 
Count=10 

Bucket 3 
Count=10 

Bucket 4 
Count=7 

Bucket 5 
Count=9 
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Today’s Class 

• History & Background 
• Relational Algebra Equivalences 
• Plan Cost Estimation 
• Plan Enumeration 
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Query Optimization 

• Bring query in internal form (eg., parse 
tree) 

• … into “canonical form” (syntactic q-opt) 
• Generate alternative plans. 

– Single relation. 
– Multiple relations. 

• Estimate cost for each plan. 
• Pick the best one. 
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Plan Generation 

 
 

• What are our plan options? 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

FR 

CMU SCS 

Plan Generation 

 
 

• Sequential Scan 
• Binary Search 

– if sorted & consecutive 
• Index Search 

– if an index exists 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 
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Sequential Scan 

 
 

• BR (worst case) 
• BR /2 (on average, if we search 

for primary key) 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

FR 
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Binary Search 

 
 

• ~log(BR) + SC(A,R)/ FR  
• Extra blocks are ones that 

contain qualifying tuples 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

FR 
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Binary Search 

 
 

• ~log(BR) + SC(A,R)/ FR  
• Extra blocks are ones that 

contain qualifying tuples 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

We showed that estimating 
this is non-trivial. 

FR 

CMU SCS 

Index Search 

 
 

• Index Search: 
– levels of index +  

blocks w/ qual. tuples 
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… 

#2 

#3 

#BR 

#1 

SR 

Case#1: Primary Key 
Case#2: Secondary key – clustering index 
Case#3: Secondary key – non-clust. index 

SELECT *  
  FROM SAILORS 
WHERE rating = 10 

FR 
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Index Search: Case #1 

 
 

• Primary Key 
– cost: HTi + 1 
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

HTi 
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Index Search: Case #2 

 
 

• Secondary key with 
clustering index: 
– cost: HTi + SC(A,R)/FR  
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

HTi 
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Index Search: Case #3 

 
 

• Secondary key with 
non-clustering index: 
– cost: HTi + SC(A,R)  
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… 

#2 

#3 

#BR 

#1 

SR SELECT *  
  FROM SAILORS 
WHERE rating = 10 

…
 

HTi 
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Query Optimization 

• Bring query in internal form (eg., parse 
tree) 

• … into “canonical form” (syntactic q-opt) 
• Generate alternative plans. 

– Single relation. 
– Multiple relations. 

• Estimate cost for each plan. 
• Pick the best one. 
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Queries over Multiple Relations 

• As number of joins increases, number of 
alternative plans grows rapidly 
– We need to restrict search space. 

• Fundamental decision in System R: only 
left-deep join trees are considered. 
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Queries over Multiple Relations 

• Fundamental decision in System R: only 
left-deep join trees are considered. 
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B A 

C 

D 

B A 

C 

D 

C D B A 
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Queries over Multiple Relations 

• Fundamental decision in System R: only 
left-deep join trees are considered. 
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B A 

C 

D 

B A 

C 

D 

C D B A X X 
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Queries over Multiple Relations 

• Fundamental decision in System R: only 
left-deep join trees are considered. 
– Allows for fully pipelined plans where 

intermediate results not written to temp files. 
– Not all left-deep trees are fully pipelined (e.g., 

SM join). 
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Queries over Multiple Relations 

• Enumerate the orderings (= left deep tree) 
• Enumerate the plans for each operator 
• Enumerate the access paths for each table 

 
• Use dynamic programming to save cost 

estimations. 
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Dynamic Programming Example 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Cheapest flight PIT -> PVG? 

$800 

$50 
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Dynamic Programming Example 
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PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Assumption: NO package deals:  cost CDG->PVG  

is always $800, no matter how reached CDG 

$800 

$50 
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Dynamic Programming Example 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Solution: compute partial optimal, left-to-right: 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 
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Dynamic Programming Example 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Solution: compute partial optimal, left-to-right: 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 
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PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Solution: compute partial optimal, left-to-right: 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

Dynamic Programming Example 
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Dynamic Programming Example 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

Solution: compute partial optimal, left-to-right: 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 
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Dynamic Programming Example 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 

So, best price is $1,500 – which legs? 

$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 
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Dynamic Programming Example 
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PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 
$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

So, best price is $1,500 – which legs? 

A: follow the winning edges, backwards 
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Dynamic Programming Example 
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PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 
$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

So, best price is $1,500 – which legs? 

A: follow the winning edges, backwards 
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Dynamic Programming Example 
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PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 
$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

So, best price is $1,500 – which legs? 

A: follow the winning edges, backwards 

CMU SCS 

Dynamic Programming Example 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 
$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

Q: what are the states, costs and arrows, in q-opt? 
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Dynamic Programming Example 

PIT 

CDG 

ATL 

PVG 

BOS 

FRA 

JKF 

$200 

$150 

$500 
$800 

$50 

$450 

$650 

$1050 

$850 

$950 

$200 

$150 

$50 

$700 

$650 

$1500 

Q: what are the states, costs and arrows, in q-opt? 
A: set of intermediate result tables 
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Q-Opt + Dynamic Programming 

• E.g., compute    R join S join T 
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R 
S 
T 

R join S 
T 

R 
S join T 

R join S join T … 

150 (SM) 

2,500 (NL) 

… 

Sort-Merge 

Nested Loop 

300 (HJ) 

Hash-Join 
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Q-Opt + Dynamic Programming 

• Details: how to record the fact that, say R 
is sorted on R.a? or that the user requires 
sorted output? 

• Consider the following query: 
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SELECT * 
  FROM R, S, T 
 WHERE R.a = S.a AND S.b = T.b 
 ORDER BY R.a  
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Q-Opt + Dynamic Programming 

• E.g., compute    R join S join T order by 
R.a 
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R 
S 
T 

R join S 
T 

R 
S join T 

R join S join T … 

150 (SM) 

2,500 (NL) 
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Q-Opt + Dynamic Programming 

• E.g., compute    R join S join T order by 
R.a 
 

Faloutsos/Pavlo CMU SCS 15-415/615 85 

R 
S 
T 

R join S 
T 

R 
S join T 

R join S join T … 

150 (SM) 

2,500 (NL) R join S join T, 
sorted R.a 

sort 

Any other changes? 
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Q-Opt + Dynamic Programming 
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R 
S 
T 

R join S 
T 

R 
S join T 

R join S join T … 

150 (SM) 

2,500 (NL) R join S join T, 
sorted R.a 

sort 

150 (SM) 
R join S (R.a) 

T 2000  (NL) 

50 (HJ) 
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Candidate Plans 

Faloutsos/Pavlo CMU SCS 15-415/615 87 

SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

1. Enumerate relation orderings: 

R S 

B 

S R 

B 

S B 

R x 

B S 

R x 

B R 

S 

R B 

S 
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Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

1. Enumerate relation orderings: 

R S 

B 

S R 

B 

S B 

R x 

B S 

R x 

B R 

S 

R B 

S 

Prune plans with 
cross-products 
immediately! 
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Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

1. Enumerate relation orderings: 

R S 

B 

S R 

B 

S B 

R x 

B S 

R x 

B R 

S 

R B 

S X 
X Prune plans with 

cross-products 
immediately! 
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Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

2. Enumerate join algorithm choices: 

R S 

B 

R S 

B 

NLJ 

NLJ 

R S 

B 

NLJ 

HJ 

R S 

B 

HJ 

HJ 

R S 

B 

HJ 

NLJ 

Do this for the 
other plans.  
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Candidate Plans 

Faloutsos/Pavlo CMU SCS 15-415/615 91 

SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

3. Enumerate access method choices: 

R S 

B 

NLJ 

NLJ 

R S 

B 

NLJ 

NLJ 

Heap Scan Heap Scan 

Heap Scan 

R S 

B 

NLJ 

NLJ 

Heap Scan Index Scan (R.sid) 

Heap Scan 
Do this for the 

other plans.  
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Candidate Plans 
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SELECT sname, bname, day 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid AND R.bid = B.bid 

4. Now we can estimate the cost of each plan. 

R S 

B 

NLJ 

NLJ 

Heap Scan Index Scan (R.sid) 

Heap Scan 
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Query Optimization 

• Bring query in internal form (eg., parse 
tree) 

• … into “canonical form” (syntactic q-opt) 
• Generate alternative plans. 

– Single relation. 
– Multiple relations. 
– Nested sub-queries. 

• Estimate cost for each plan. 
• Pick the best one. 
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Nested Sub-Queries 

• Re-write nested queries 
• to: de-correlate and/or flatten them 
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Nested Sub-Queries 
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SELECT S.sid, MIN(R.day) 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid 
   AND R.bid = B.bid 
   AND B.color = ‘red’ 
   AND S.rating = (SELECT MAX(S2.rating) 
                     FROM Sailors S2) 
 GROUP BY S.sid 
HAVING COUNT(*) > 1 

For each sailor with the highest rating (over all 
sailors) and at least two reservations for red 
boats, find the sailor id and the earliest date on 
which the sailor has a reservation for a red boat. 
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Decomposing Queries into 
Blocks 

• The optimizer breaks up queries into blocks 
and then concentrates on one block at a 
time. 
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Decomposing Queries into 
Blocks 
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SELECT S.sid, MIN(R.day) 
  FROM Sailors S, Reserves R, Boats B 
 WHERE S.sid = R.sid 
   AND R.bid = B.bid 
   AND B.color = ‘red’ 
   AND S.rating = (SELECT MAX(S2.rating) 
                     FROM Sailors S2) 
 GROUP BY S.sid 
HAVING COUNT(*) > 1 

Nested Block Outer Block 
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Decomposing Queries into 
Blocks 

• The optimizer breaks up queries into blocks 
and then concentrates on one block at a 
time. 

• Split n-way joins into 2-way joins, then 
individually optimize. 

Faloutsos/Pavlo CMU SCS 15-415/615 98 

CMU SCS 

Query Optimizer Overview 

• System R:  
– Break query in query blocks 
– Simple queries (ie., no joins): look at stats 
– n-way joins: left-deep join trees; ie., only one 

intermediate result at a time 
• Pros: smaller search space; pipelining 
• Cons: may miss optimal 

– 2-way joins: NL and sort-merge 
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CMU SCS 

Conclusions 

• Ideas to remember: 
– Syntactic q-opt – do selections early 
– Selectivity estimations (uniformity, indep.; 

histograms; join selectivity) 
– Hash join (nested loops; sort-merge) 
– Left-deep joins 
– Dynamic programming 
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