
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo
Lecture#15: Query Optimization

CMU SCS

Administrivia

• HW5 is due Thursday March 17th.
• You can pick up your mid-term from

Marilyn Walgora’s office (GHC 8120).
• Christos is out of the country.
• No office hours next week.

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Today’s Class

• History & Background
• Relational Algebra Equivalences
• Plan Cost Estimation
• Plan Enumeration

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

4

Cost-based Query Sub-System

 Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Catalog Manager

Query Plan Evaluator
Schema Statistics

Select *
From Blah B

Where B.blah = blah
Queries

CMU SCS

Query Optimization

• Remember that SQL is declarative.
– User tells the DBMS what answer they want,

not how to get the answer.
• There can be a big difference in

performance based on plan is used:
– See last week: 5.7 days vs. 45 seconds

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

Quick DB History Lesson

Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

1960s – IBM IMS

• First database system.
• Hierarchical data model.
• Programmer-defined physical storage

format.
• Tuple-at-a-time queries.

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Hierarchical Data Model

SUPPLIER
(sno,sname,scity,sstate)

PART
(pno,pname,psize,qty,price)

3, “Dirty Rick’s Supplies”,
New York, NY

1001, “Battery Pack”, Large,
500, $100

Schema Instance

Faloutsos/Pavlo 8 CMU SCS 15-415/615

CMU SCS

Hierarchical Data Model

SUPPLIER
(sno,sname,scity,sstate)

PART
(pno,pname,psize,qty,price)

3, “Dirty Rick’s Supplies”,
New York, NY

1001, “Battery Pack”, Large,
500, $100

Schema Instance

Duplicate Data

No Independence

Faloutsos/Pavlo 9 CMU SCS 15-415/615

CMU SCS

1970s – CODASYL

• COBOL people got together and
proposed a standard based on a
network data model.

• Tuple-at-a-time queries.
– This forces the programmer to do manual

query optimization.

Faloutsos/Pavlo 10

Bachman

CMU SCS 15-415/615

CMU SCS

Supply
(qty,price)

Network Data Model

SUPPLIER
(sno,sname,scity,sstate)

PART
(pno,pname,psize)

Supplies SuppliedBy

Schema

Faloutsos/Pavlo 11 CMU SCS 15-415/615

CMU SCS

Supply
(qty,price)

Network Data Model

SUPPLIER
(sno,sname,scity,sstate)

PART
(pno,pname,psize)

Supplies SuppliedBy

Schema

Complex Queries

Faloutsos/Pavlo 12 CMU SCS 15-415/615

CMU SCS

1970s – Relational Model

• Ted Codd saw the maintenance
overhead for IMS/Codasyl.

• Proposed database abstraction based
on relations:
– Store database in simple data structures.
– Access it through high-level language.
– Physical storage left up to implementation.

Faloutsos/Pavlo 13

Codd

CMU SCS 15-415/615

CMU SCS

IBM System R

• Skunkworks project at IBM Research in
San Jose to implement Codd’s ideas.

• Had to figure out all of the things that we
are discussing in this course themselves.

• IBM never commercialized System R.

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

IBM System R

• First implementation of a query optimizer.
• People argued that the DBMS could never

choose a query plan better than what a
human could write.

• A lot of the concepts from System R’s
optimizer are still used today.

Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU SCS

Today’s Class

• History & Background
• Relational Algebra Equivalences
• Plan Cost Estimation
• Plan Enumeration
• Nested Sub-queries

Faloutsos/Pavlo CMU SCS 15-415/615 16

CMU SCS

Relational Algebra Equivalences

• A query can be expressed in different
ways.

• The optimizer considers variations and
choose the one with the lowest cost.

• How do we know whether two queries are
equivalent?
– Equivalence Rules (chapter 15.3)

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

Relational Algebra Equivalences

• Two relational algebra expressions are
equivalent if they generate the same set of
tuples.

Faloutsos/Pavlo CMU SCS 15-415/615 18

CMU SCS

Relational Algebra Equivalences

Faloutsos/Pavlo CMU SCS 15-415/615 19

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

CUSTOMER ACCOUNT

σ
⨝

π

acctno=acctno

amt>1000

cname, amt

CUSTOMER ACCOUNT

σ

⨝
π

acctno=acctno

amt>1000

cname, amt

CMU SCS

Relational Algebra Equivalences

Faloutsos/Pavlo CMU SCS 15-415/615 20

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

πcname, amt(σamt>1000 (customer⋈account))

πcname, amt(customer⋈(σamt>1000 (account))
=

CMU SCS

Equivalence of Expressions

• Q: How to prove a transf. rule?

• Use relational tuple calculus to show that
LHS = RHS:

Faloutsos/Pavlo CMU SCS 15-415/615 21

)2()1()21(RRRR PPP σσσ =

)2()1()21(RRRR PPP σσσ ∪=∪
LHS RHS

CMU SCS

Equivalence of Expressions

Faloutsos/Pavlo CMU SCS 15-415/615 22

⇔∧∈∨∧∈
⇔∧∈∨∈

⇔∧∪∈
⇔∈

))()2())(1(
)()21(

)()21(

tPRttPRt
tPRtRt

tPRRt
LHSt

)2()1()21(RRRR PPP σσσ ∪=∪

CMU SCS

Equivalence of Expressions

Faloutsos/Pavlo CMU SCS 15-415/615 23

QED
RHSt

RRt
RtRt

tPRttPRt

PP

PP

∈
⇔∪∈

⇔∈∨∈
⇔∧∈∨∧∈

)2()1(
))2(())1((

))()2())(1(
...

σσ
σσ

)2()1()21(RRRR PPP σσσ ∪=∪

CMU SCS

Equivalence of Expressions

• Q: How to disprove a rule?

Faloutsos/Pavlo CMU SCS 15-415/615 24

)2()1()21(RRRR AAA πππ −=− X
A B

Christos squirrels R1

Ø

A B

Christos knifefights
R2

A B

Christos squirrels ≠

CMU SCS

Equivalence of Expressions

• Selections:
– Perform them early
– Break a complex predicate, and push

• Simplify a complex predicate

– (X=Y AND Y=3) → X=3 AND Y=3

Faloutsos/Pavlo CMU SCS 15-415/615 25

))...)((...()(21^...2^1 RR pnpppnpp σσσσ =

CMU SCS

Equivalence of Expressions

• Projections:
– Perform them early

• Smaller tuples
• Fewer tuples (if duplicates are eliminated)

– Project out all attributes except the ones
requested or required (e.g., joining attr.)

Faloutsos/Pavlo CMU SCS 15-415/615 26

CMU SCS

Equivalence of Expressions

• Joins:
– Commutative, associative

• Q: How many different orderings are there
for an n-way join?

Faloutsos/Pavlo CMU SCS 15-415/615 27

RSSR =
)()(TSRTSR =

CMU SCS

Equivalence of Expressions

• Joins: How many different orderings are
there for an n-way join?

• A: Catalan number ~ 4^n
– Exhaustive enumeration: too slow.

• We’ll see in a second how an optimizer
limits the search space...

Faloutsos/Pavlo CMU SCS 15-415/615 28

CMU SCS

Today’s Class

• History & Background
• Relational Algebra Equivalences
• Plan Cost Estimation
• Plan Enumeration

Faloutsos/Pavlo CMU SCS 15-415/615 29

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse
tree)

• … into “canonical form” (syntactic q-opt)
• Generate alternative plans.
• Estimate cost for each plan.
• Pick the best one.

Faloutsos/Pavlo CMU SCS 15-415/615 30

CMU SCS

Cost Estimation

• How long will a query take?
– CPU: Small cost; tough to estimate.
– Disk: # of block transfers.
– Network: # of messages

• How many tuples will qualify?
• What statistics do we need to keep?

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU SCS

Cost Estimation – Statistics

• For each relation R we keep:
– NR → # tuples
– SR → size of tuple in bytes
– V(A,R) → # of distinct values

of attribute ‘A’

Faloutsos/Pavlo CMU SCS 15-415/615 32

…

SR

#2
#3

#NR

#1

CMU SCS

Derivable Statistics

• FR → max# records/block
• BR → # blocks
• SC(A,R) → selection cardinality

avg# of records with A=given

Faloutsos/Pavlo CMU SCS 15-415/615 33

…

#2

#3

#BR

#1 FR

SR

CMU SCS

Derivable Statistics

• SC(A,R) → Selection Cardinality
avg# of records with A=given
→ NR / V(A,R)

• Note that this assumes data uniformity
– 10,000 students, 10 colleges – how many

students in SCS?

Faloutsos/Pavlo CMU SCS 15-415/615 34

CMU SCS

Additional Statistics

• For index i:
– Fi → average fanout (~50-100)
– HTi → # levels of index i (~2-3)

~ log(#entries)/log(Fi)
– LBi # → blocks at leaf level

Faloutsos/Pavlo CMU SCS 15-415/615 35

HTi

CMU SCS

Statistics

• Where do we store them?
• How often do we update them?

Faloutsos/Pavlo CMU SCS 15-415/615 36

CMU SCS

Selection Statistics

• We saw simple predicates (name=“Christos”)
• How about more complex predicates, like

– salary > 10000
– age=30 AND jobTitle=“Costermonger”

• What is their selectivity?

Faloutsos/Pavlo CMU SCS 15-415/615 37

CMU SCS

Selections – Complex Predicates

• Selectivity sel(P) of predicate P:
== fraction of tuples that qualify
sel(P) = SC(P) / NR

Faloutsos/Pavlo CMU SCS 15-415/615 38

Selection Cardinality

of tuples

CMU SCS

Selections – Complex Predicates

• Assume that V(rating, SAILORS) has 5
distinct values (i.e., 0 to 4).

• simple predicate P: A=constant
– sel(A=constant) = 1/V(A,R)
– eg., sel(rating=‘2’) = 1/5

• What if V(A,R) is unknown??

Faloutsos/Pavlo CMU SCS 15-415/615 39

rating

count

4 0

CMU SCS

• Range Query: sel(rating >= ‘2’)
• sel(A>a) = (Amax – a) / (Amax – Amin)

Selections – Complex Predicates

Faloutsos/Pavlo CMU SCS 15-415/615 40

rating

count

4 0

CMU SCS

• Negation: sel(rating != ‘2’)
– sel(not P) = 1 – sel(P)

• Observation: selectivity ≈ probability

Selections – Complex Predicates

Faloutsos/Pavlo CMU SCS 15-415/615 41

rating

count

4 0

‘P’

CMU SCS

Selections – Complex Predicates

• Conjunction:
– sel(rating = ‘2’ and name LIKE ‘C%’)
– sel(P1 ⋀ P2) = sel(P1) · sel(P2)
– INDEPENDENCE ASSUMPTION

Faloutsos/Pavlo CMU SCS 15-415/615 42

P1 P2
Not always true in

practice!

CMU SCS

Selections – Complex Predicates

• Disjunction:
– sel(rating = ‘2’ or name LIKE ‘C%’)
– sel(P1 ⋁ P2)

 = sel(P1) + sel(P2) – sel(P1 ⋁ P2)
 = sel(P1) + sel(P2) – sel(P1) · sel(P2)

– INDEPENDENCE ASSUMPTION, again

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Selections – Complex Predicates

• Disjunction, in general:
– sel(P1 or P2 or … Pn) =
– 1 - (1- sel(P1)) · (1 - sel(P2)) · … (1 - sel(Pn))

Faloutsos/Pavlo CMU SCS 15-415/615 44

P1 P2

CMU SCS

Selections – Summary

• sel(A=constant) → 1/V(A,r)
• sel(A>a) → (Amax – a) / (Amax – Amin)
• sel(not P) → 1 – sel(P)
• sel(P1 and P2) → sel(P1) ∙ sel(P2)
• sel(P1 or P2) → sel(P1) + sel(P2) –

 sel(P1) · sel(P2)
• sel(P1 or ... or Pn) = 1 - (1-sel(P1)) · ... ·

 (1-sel(Pn))
Faloutsos/Pavlo CMU SCS 15-415/615 45

CMU SCS

Joins

• Q: Given a join of R and S, what is the
range of possible result sizes in #of tuples?
– Hint: what if Rcols⋂ Scols = Ø?
– Rcols⋂ Scols is a key for R and a foreign key in

S?

Faloutsos/Pavlo CMU SCS 15-415/615 46

CMU SCS

Joins

• Q: Given a join of R and S, what is the
range of possible result sizes in #of tuples?
– Hint: what if Rcols⋂ Scols = Ø?
– Rcols⋂ Scols is a key for R and a foreign key in

S?

Faloutsos/Pavlo CMU SCS 15-415/615 47

NR · NS

≤ NS

CMU SCS

Result Size Estimation for Joins

• General case: Rcols⋂ Scols = {A} where A
is not a key for either table.

• Hint: for a given tuple of R, how many
tuples of S will it match?

Faloutsos/Pavlo CMU SCS 15-415/615 48

CMU SCS

Result Size Estimation for Joins

• General case: Rcols⋂ Scols = {A} where A
is not a key for either table.
– Match each R-tuple with S-tuples:

estSize ≈ NR · NS / V(A,S)
– Symmetrically, for S:

estSize ≈ NR · NS / V(A,R)
• Overall:

– estSize ≈ NR · NS / max({V(A,S), V(A,R)})

Faloutsos/Pavlo CMU SCS 15-415/615 49

CMU SCS

Cost Estimations

• Our formulas are nice but we assume that
data values are uniformly distributed.

Faloutsos/Pavlo CMU SCS 15-415/615 50

Uniform Approximation of D Distribution D

CMU SCS

Cost Estimations

• Our formulas are nice but we assume that
data values are uniformly distributed.

Faloutsos/Pavlo CMU SCS 15-415/615 51

Uniform Approximation of D Distribution D

of occurrences

Distinct values of attribute

CMU SCS

Histograms

• Allows the DBMS to have leverage better
statistics about the data.

Equiwidth Histogram ~ Quantiles Equiwidth Histogram

Bucket 1
Count=8

Bucket 2
Count=4

Bucket 3
Count=15

Bucket 4
Count=3

Bucket 5
Count=15

Bucket 1
Count=9

Bucket 2
Count=10

Bucket 3
Count=10

Bucket 4
Count=7

Bucket 5
Count=9

CMU SCS

Today’s Class

• History & Background
• Relational Algebra Equivalences
• Plan Cost Estimation
• Plan Enumeration

Faloutsos/Pavlo CMU SCS 15-415/615 53

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse
tree)

• … into “canonical form” (syntactic q-opt)
• Generate alternative plans.

– Single relation.
– Multiple relations.

• Estimate cost for each plan.
• Pick the best one.
Faloutsos/Pavlo CMU SCS 15-415/615 54

CMU SCS

Plan Generation

• What are our plan options?

Faloutsos/Pavlo CMU SCS 15-415/615 55

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

FR

CMU SCS

Plan Generation

• Sequential Scan
• Binary Search

– if sorted & consecutive
• Index Search

– if an index exists

Faloutsos/Pavlo CMU SCS 15-415/615 56

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

CMU SCS

Sequential Scan

• BR (worst case)
• BR /2 (on average, if we search

for primary key)

Faloutsos/Pavlo CMU SCS 15-415/615 57

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

FR

CMU SCS

Binary Search

• ~log(BR) + SC(A,R)/ FR
• Extra blocks are ones that

contain qualifying tuples

Faloutsos/Pavlo CMU SCS 15-415/615 58

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

FR

CMU SCS

Binary Search

• ~log(BR) + SC(A,R)/ FR
• Extra blocks are ones that

contain qualifying tuples

Faloutsos/Pavlo CMU SCS 15-415/615 59

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

We showed that estimating
this is non-trivial.

FR

CMU SCS

Index Search

• Index Search:
– levels of index +

blocks w/ qual. tuples

Faloutsos/Pavlo CMU SCS 15-415/615 60

…

#2

#3

#BR

#1

SR

Case#1: Primary Key
Case#2: Secondary key – clustering index
Case#3: Secondary key – non-clust. index

SELECT *
 FROM SAILORS
WHERE rating = 10

FR

CMU SCS

Index Search: Case #1

• Primary Key
– cost: HTi + 1

Faloutsos/Pavlo CMU SCS 15-415/615 61

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

HTi

CMU SCS

Index Search: Case #2

• Secondary key with
clustering index:
– cost: HTi + SC(A,R)/FR

Faloutsos/Pavlo CMU SCS 15-415/615 62

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

HTi

CMU SCS

Index Search: Case #3

• Secondary key with
non-clustering index:
– cost: HTi + SC(A,R)

Faloutsos/Pavlo CMU SCS 15-415/615 63

…

#2

#3

#BR

#1

SR SELECT *
 FROM SAILORS
WHERE rating = 10

…

HTi

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse
tree)

• … into “canonical form” (syntactic q-opt)
• Generate alternative plans.

– Single relation.
– Multiple relations.

• Estimate cost for each plan.
• Pick the best one.
Faloutsos/Pavlo CMU SCS 15-415/615 64

CMU SCS

Queries over Multiple Relations

• As number of joins increases, number of
alternative plans grows rapidly
– We need to restrict search space.

• Fundamental decision in System R: only
left-deep join trees are considered.

Faloutsos/Pavlo CMU SCS 15-415/615 65

CMU SCS

Queries over Multiple Relations

• Fundamental decision in System R: only
left-deep join trees are considered.

Faloutsos/Pavlo CMU SCS 15-415/615 66

B A

C

D

B A

C

D

C D B A

CMU SCS

Queries over Multiple Relations

• Fundamental decision in System R: only
left-deep join trees are considered.

Faloutsos/Pavlo CMU SCS 15-415/615 67

B A

C

D

B A

C

D

C D B A X X

CMU SCS

Queries over Multiple Relations

• Fundamental decision in System R: only
left-deep join trees are considered.
– Allows for fully pipelined plans where

intermediate results not written to temp files.
– Not all left-deep trees are fully pipelined (e.g.,

SM join).

Faloutsos/Pavlo CMU SCS 15-415/615 68

CMU SCS

Queries over Multiple Relations

• Enumerate the orderings (= left deep tree)
• Enumerate the plans for each operator
• Enumerate the access paths for each table

• Use dynamic programming to save cost

estimations.

Faloutsos/Pavlo CMU SCS 15-415/615 69

CMU SCS

Dynamic Programming Example

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Cheapest flight PIT -> PVG?

$800

$50

CMU SCS

Dynamic Programming Example

Faloutsos CMU SCS 15-415/615 71

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Assumption: NO package deals: cost CDG->PVG

is always $800, no matter how reached CDG

$800

$50

CMU SCS

Dynamic Programming Example

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

CMU SCS

Dynamic Programming Example

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

CMU SCS

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

Dynamic Programming Example

CMU SCS

Dynamic Programming Example

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

Solution: compute partial optimal, left-to-right:

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

CMU SCS

Dynamic Programming Example

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500

So, best price is $1,500 – which legs?

$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

CMU SCS

Dynamic Programming Example

Faloutsos CMU SCS 15-415/615 77

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

So, best price is $1,500 – which legs?

A: follow the winning edges, backwards

CMU SCS

Dynamic Programming Example

Faloutsos CMU SCS 15-415/615 78

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

So, best price is $1,500 – which legs?

A: follow the winning edges, backwards

CMU SCS

Dynamic Programming Example

Faloutsos CMU SCS 15-415/615 79

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

So, best price is $1,500 – which legs?

A: follow the winning edges, backwards

CMU SCS

Dynamic Programming Example

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

Q: what are the states, costs and arrows, in q-opt?

CMU SCS

Dynamic Programming Example

PIT

CDG

ATL

PVG

BOS

FRA

JKF

$200

$150

$500
$800

$50

$450

$650

$1050

$850

$950

$200

$150

$50

$700

$650

$1500

Q: what are the states, costs and arrows, in q-opt?
A: set of intermediate result tables

CMU SCS

Q-Opt + Dynamic Programming

• E.g., compute R join S join T

Faloutsos CMU SCS 15-415/615 82

R
S
T

R join S
T

R
S join T

R join S join T …

150 (SM)

2,500 (NL)

…

Sort-Merge

Nested Loop

300 (HJ)

Hash-Join

CMU SCS

Q-Opt + Dynamic Programming

• Details: how to record the fact that, say R
is sorted on R.a? or that the user requires
sorted output?

• Consider the following query:

Faloutsos/Pavlo CMU SCS 15-415/615 83

SELECT *
 FROM R, S, T
 WHERE R.a = S.a AND S.b = T.b
 ORDER BY R.a

CMU SCS

Q-Opt + Dynamic Programming

• E.g., compute R join S join T order by
R.a

Faloutsos/Pavlo CMU SCS 15-415/615 84

R
S
T

R join S
T

R
S join T

R join S join T …

150 (SM)

2,500 (NL)

CMU SCS

Q-Opt + Dynamic Programming

• E.g., compute R join S join T order by
R.a

Faloutsos/Pavlo CMU SCS 15-415/615 85

R
S
T

R join S
T

R
S join T

R join S join T …

150 (SM)

2,500 (NL) R join S join T,
sorted R.a

sort

Any other changes?

CMU SCS

Q-Opt + Dynamic Programming

Faloutsos/Pavlo CMU SCS 15-415/615 86

R
S
T

R join S
T

R
S join T

R join S join T …

150 (SM)

2,500 (NL) R join S join T,
sorted R.a

sort

150 (SM)
R join S (R.a)

T 2000 (NL)

50 (HJ)

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 87

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

1. Enumerate relation orderings:

R S

B

S R

B

S B

R x

B S

R x

B R

S

R B

S

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 88

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

1. Enumerate relation orderings:

R S

B

S R

B

S B

R x

B S

R x

B R

S

R B

S

Prune plans with
cross-products
immediately!

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 89

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

1. Enumerate relation orderings:

R S

B

S R

B

S B

R x

B S

R x

B R

S

R B

S X
X Prune plans with

cross-products
immediately!

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 90

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

2. Enumerate join algorithm choices:

R S

B

R S

B

NLJ

NLJ

R S

B

NLJ

HJ

R S

B

HJ

HJ

R S

B

HJ

NLJ

Do this for the
other plans.

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 91

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

3. Enumerate access method choices:

R S

B

NLJ

NLJ

R S

B

NLJ

NLJ

Heap Scan Heap Scan

Heap Scan

R S

B

NLJ

NLJ

Heap Scan Index Scan (R.sid)

Heap Scan
Do this for the

other plans.

CMU SCS

Candidate Plans

Faloutsos/Pavlo CMU SCS 15-415/615 92

SELECT sname, bname, day
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid AND R.bid = B.bid

4. Now we can estimate the cost of each plan.

R S

B

NLJ

NLJ

Heap Scan Index Scan (R.sid)

Heap Scan

CMU SCS

Query Optimization

• Bring query in internal form (eg., parse
tree)

• … into “canonical form” (syntactic q-opt)
• Generate alternative plans.

– Single relation.
– Multiple relations.
– Nested sub-queries.

• Estimate cost for each plan.
• Pick the best one.
Faloutsos/Pavlo CMU SCS 15-415/615 93

CMU SCS

Nested Sub-Queries

• Re-write nested queries
• to: de-correlate and/or flatten them

Faloutsos/Pavlo CMU SCS 15-415/615 94

CMU SCS

Nested Sub-Queries

Faloutsos/Pavlo CMU SCS 15-415/615 95

SELECT S.sid, MIN(R.day)
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid
 AND R.bid = B.bid
 AND B.color = ‘red’
 AND S.rating = (SELECT MAX(S2.rating)
 FROM Sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

For each sailor with the highest rating (over all
sailors) and at least two reservations for red
boats, find the sailor id and the earliest date on
which the sailor has a reservation for a red boat.

CMU SCS

Decomposing Queries into
Blocks

• The optimizer breaks up queries into blocks
and then concentrates on one block at a
time.

Faloutsos/Pavlo CMU SCS 15-415/615 96

CMU SCS

Decomposing Queries into
Blocks

Faloutsos/Pavlo CMU SCS 15-415/615 97

SELECT S.sid, MIN(R.day)
 FROM Sailors S, Reserves R, Boats B
 WHERE S.sid = R.sid
 AND R.bid = B.bid
 AND B.color = ‘red’
 AND S.rating = (SELECT MAX(S2.rating)
 FROM Sailors S2)
 GROUP BY S.sid
HAVING COUNT(*) > 1

Nested Block Outer Block

CMU SCS

Decomposing Queries into
Blocks

• The optimizer breaks up queries into blocks
and then concentrates on one block at a
time.

• Split n-way joins into 2-way joins, then
individually optimize.

Faloutsos/Pavlo CMU SCS 15-415/615 98

CMU SCS

Query Optimizer Overview

• System R:
– Break query in query blocks
– Simple queries (ie., no joins): look at stats
– n-way joins: left-deep join trees; ie., only one

intermediate result at a time
• Pros: smaller search space; pipelining
• Cons: may miss optimal

– 2-way joins: NL and sort-merge

Faloutsos/Pavlo CMU SCS 15-415/615 99

CMU SCS

Conclusions

• Ideas to remember:
– Syntactic q-opt – do selections early
– Selectivity estimations (uniformity, indep.;

histograms; join selectivity)
– Hash join (nested loops; sort-merge)
– Left-deep joins
– Dynamic programming

Faloutsos/Pavlo CMU SCS 15-415/615 101

