IMPORTANT

- Deposit hard copy of your answers in class at 1:30pm on Tuesday, 3/24/2015.
- Separate answers, as usually, i.e., please solve each of the 4 questions on a separate page, and type the usual, full information, on each page: your name, Andrew ID, course #, Homework #, and Question #.

Reminders

- Plagiarism: Homework may be discussed with other students, but all homework is to be completed individually.
- Typeset all of your answers whenever possible. Illegible handwriting may get no points, at the discretion of the graders.
- Late homeworks: please email late homeworks
 - to all TAs
 - with the subject line exactly 15-415 Homework Submission (HW 6)
 - and the count of slip-days you are using.

For your information:

- Graded out of 100 points; 4 questions total
- Rough time estimate: ≈6 hours (1-2 hours for each question)

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Optimization</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Functional Dependencies</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Decompositions</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Normal Forms</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1: Query Optimization . [20 points]

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: _______; andrew-id: _______; late days:
Graded by: Elomar

For this problem we consider a movie reviewing database with following three tables:

1. Movies(title, imdb_number, year), where the primary key is imdb_number;
2. Reviewers(userid, username), where the primary key is userid;
3. Reviews(userid, imdb_number, rating, comment), where the primary key is (userid, imdb_number), userid is foreign key referencing Reviewers, and imdb_number is foreign key referencing Movies.

For these tables we know the following statistics:

- **Movies** consists of \(N_1 = 60,000 \) tuples, there are:
 - 40,000 distinct movie titles,
 - 90 distinct years, 1925–2014 inclusive.
- **Reviewers** consists of \(N_2 = 50,000 \) tuples, there are:
 - 50,000 distinct userids,
 - 50,000 distinct usernames
- **Reviews** consists of \(N_3 = 1,300,000 \) tuples, there are:
 - 38,000 distinct userids,
 - 33,000 distinct movie titles,
 - 5 distinct ratings (i.e. 1, 2, 3, 4, and 5) without nulls.

For the queries below, assume that there are no correlations between the columns of a table nor any prior knowledge about the data (i.e., assume uniform distribution). Estimate the number of resulting tuples for the query, and give the answer with fourth significant digit accuracy. We will accept either rounding half up or down, but no partial credit will be given.

(a) [3 points] SELECT * FROM Movies WHERE year = 2001;

Solution: \(\frac{N_1}{90} \)

(b) [4 points] SELECT * FROM Movies WHERE year = 1999 AND title = “Fight Club”

Solution: \(\frac{N_2}{90}/40000 \)

(c) [4 points] SELECT * FROM Reviews WHERE rating > 3

Solution: \(520000 \)

Question 1 continues...
Solution: $N_3 \cdot 0.4$

(d) [4 points] \texttt{SELECT year, count(*) FROM Movies GROUP BY year}

(d) 90

Solution: number of years

(e) [5 points] \texttt{SELECT count(*)}
\texttt{FROM Movies JOIN Reviews ON Movies.imdb_number = Reviews.imdb_number}
\texttt{GROUP BY Movies.title}

(e) 33000

Solution: number of distinct movie titles

note: No partial points were given on this question
2.1 Consider the following legal instance of a relational schema S with attributes ABC:

\[
\begin{array}{|c|c|c|}
\hline
\alpha & 9 & T \\
\hline
\alpha & 16 & F \\
\hline
\beta & 20 & F \\
\hline
\end{array}
\]

Table 1: Legal instance of schema S for question 2.1

(a) Which of the following dependencies are violated by the instances of S in Table 1?

i. [1 point] ■ Yes □ No : $A \rightarrow B$ is violated.
ii. [1 point] □ Yes ■ No : $B \rightarrow A$ is violated.
iii. [1 point] ■ Yes □ No : $C \rightarrow A$ is violated.
iv. [1 point] □ Yes ■ No : $AC \rightarrow B$ is violated.
v. [1 point] □ Yes ■ No : $B \rightarrow AC$ is violated.

(b) [1 point] By only observing the instance of S in Table 1 can you identify the functional dependencies that hold on schema S?

□ Yes ■ No

Solution: No, because we can only see an instance.

2.2 For the next set of questions consider the relational schema $r = \{P, Q, R, S, T, U, V\}$ and the set of functional dependencies FD:

\[
\begin{align*}
P & \rightarrow Q \\
Q & \rightarrow R \\
PS & \rightarrow TRV \\
QT & \rightarrow UR \\
S & \rightarrow V
\end{align*}
\]

(a) [3 points] Which of the following is a minimum cover of the FD?

(a) The given FD is a minimum cover.
(b) $\{P \rightarrow Q, Q \rightarrow R, PS \rightarrow T, QT \rightarrow UR, S \rightarrow V\}$
(c) $\{P \rightarrow Q, Q \rightarrow R, P \rightarrow T, Q \rightarrow U, S \rightarrow V\}$
(d) $\{P \rightarrow Q, Q \rightarrow R, PS \rightarrow T, QT \rightarrow U, S \rightarrow V\}$
(e) none of the above - the cover is __________________________

Question 2 continues...
Solution: (d)

(b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(5))?

 i. [1 point] ■ Yes □ No : $P \rightarrow R$
 ii. [2 points] ■ Yes □ No : $PS \rightarrow U$
 iii. [2 points] □ Yes ■ No : $QS \rightarrow U$
 iv. [2 points] □ Yes ■ No : $QST \rightarrow P$

(c) [2 points] True or False: The attribute closure $\{Q\}^+$ is $\{Q, R, T\}$.
 □ True ■ False

(d) [2 points] True or False: The attribute closure $\{PS\}^+$ is $\{P, Q, R, S, T, U, V\}$.
 ■ True □ False

Homework 6 continues...
3.1 For this set of questions, consider the relation with attributes, $S = \{A, B, C, D, E, F\}$, let the following functional dependencies FD be defined over the relation S:

$$
A \rightarrow D \\
A \rightarrow E \\
D \rightarrow C \\
D \rightarrow F
$$

(a) [6 points] Provide the attribute closure of $\{AB\}$.

Solution: $\{AB\}^+ = \{ABCDEF\}$

(b) Identify whether the decomposition ABC, CDE, EFA is lossless and dependency-preserving?

i. [3 points] □ Yes ■ No : Lossless?

Solution: Not lossless because the intersection of CDE and EFA (i.e. E) is not the candidate key for either of the relations.

ii. [3 points] □ Yes ■ No : Dependency Preserving?

Solution: Not dependency preserving because $A \rightarrow D$ is not present in the closure of the unions of projection of FD on the three decomposed relations.

(c) Identify whether the decomposition $ABCE$, ADC, $ADEF$ is lossless and dependency-preserving?

i. [3 points] ■ Yes □ No : Lossless?

Solution: Lossless join!

ii. [3 points] ■ Yes □ No : Dependency Preserving?

Solution: Dependency preserving!

3.2 Consider the relation with attributes, $A = \{P, Q, R, S, T, U, V\}$. The following
functional dependencies hold over A.

$$
RT \rightarrow P \\
QS \rightarrow T \\
R \rightarrow Q
$$

(a) Identify whether the decomposition QST, QR, $PRSUV$ is lossless and dependency-preserving?

i. [3 points] ■ Yes □ No : Lossless?

Solution: Lossless join!

ii. [3 points] □ Yes ■ No : Dependency Preserving?

Solution: Not dependency preserving

(b) Identify whether the decomposition QST, QR, $PRSUV$, PRT is lossless and dependency-preserving?

i. [3 points] ■ Yes □ No : Lossless?

Solution: Lossless join!

ii. [3 points] ■ Yes □ No : Dependency Preserving?

Solution: Dependency preserving!
Consider the relation with attributes, $S = \{A, B, C, D, E\}$. Let the following functional dependencies be defined over the relation S,

$$
\begin{align*}
A &\rightarrow BC \\
CD &\rightarrow E \\
B &\rightarrow D \\
E &\rightarrow A
\end{align*}
$$

(a) Identify whether this relationship is in 3NF and/or BCNF?

i. [2 points] ■ Yes □ No : 3NF

ii. [2 points] □ Yes ■ No : BCNF

(b) [5 points] Provide the projection of FDs for the subset of attributes $\{ABD\}$

Solution: $A \rightarrow B$, $B \rightarrow D$

(c) [8 points] Give a BCNF decomposition of S that is lossless.

Solution: (A, B, C, E) and (B, D)

(d) [3 points] Is your BCNF decomposition dependency preserving?

□ True ■ False

(e) [10 points] Give a 3NF decomposition of S that is lossless and dependency preserving.

Solution: $(A, B, C), (C, D, E), (B, D), (E, A)$

I gave this one for free