Carnegie Mellon University
Department of Computer Science
15-415/615 - Database Applications
C. Faloutsos, A. Pavlo, Spring 2015

Homework 4 (by Hong Bin Shim) - Solutions
Due: hard copy, at 1:30pm, Feb. 26, 2015

VERY IMPORTANT: Deposit hard copy of your answers, in class. Please
1. Separate your answers, on different page(s) for each question (staple additional pages,
 if needed).
2. Type the full info on each page: your name, Andrew ID, course#, Homework#,
 Question# on each question.

Reminders
• Plagiarism: Homework is to be done individually.
• Typeset all of your answers, please.
• Late homeworks: Standard policy: email (a) to all TAs, (b) with the subject line
 exactly 15-415 Homework Submission (HW 4), and (c) the count of slip-days you are
 using.

For your information:
• Graded out of 100 points. 6 questions total. Expected effort: ≈ 3-4h.
• Solutions for odd numbered exercises are available on the web:
 You are strongly encouraged to use them.

Revision : 2015/03/02 05:16

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffers</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>B Tree</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>B+ Tree</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Extendible Hashing</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Linear Hashing</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Sorting</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1: Buffers [16 points]

Consider a buffer that can hold up to 4 frames and files numbered from 1 to 6 inclusive. Total of 8 requests come in to fetch files in this order: 1, 2, 3, 2, 1, 4, 5, 6. Consider three different buffer replacement policy: least recently used (LRU), most recently used (MRU), and clock.

(a) [6 points] For each policy, which page is evicted at which time as requests come in? Fill in the table below. (Put a “-” (dash) if nothing is evicted at certain timestamp)

<table>
<thead>
<tr>
<th>timestamp</th>
<th>request</th>
<th>evicted (LRU)</th>
<th>evicted (MRU)</th>
<th>evicted (Clock)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>P1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t2</td>
<td>P2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t3</td>
<td>P3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t4</td>
<td>P2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t5</td>
<td>P1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t6</td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t7</td>
<td>P5</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>t8</td>
<td>P6</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Solution:

<table>
<thead>
<tr>
<th>timestamp</th>
<th>request</th>
<th>evicted (LRU)</th>
<th>evicted (MRU)</th>
<th>evicted (Clock)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>P1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>t2</td>
<td>P2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>t3</td>
<td>P3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>t4</td>
<td>P2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>t5</td>
<td>P1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>t6</td>
<td>P4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>t7</td>
<td>P5</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>t8</td>
<td>P6</td>
<td>2</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

(b) [4 points] Draw the final state of the buffer for each policy.

LRU:

MRU:

Clock:

Solution:

LRU: 1 6 5 4

MRU: 1 2 3 6

Clock: 5 6 3 4

Question 1 continues...
(c) [6 points] For each of the three policies, draw the final states of the buffer for a sequential scan of pages numbered from P1 to P10 inclusive. (Scanning 10 pages from page 1 to page 10, in order)

LRU:
MRU:
Clock:

Solution:

<table>
<thead>
<tr>
<th>LRU:</th>
<th>9</th>
<th>10</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRU:</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Clock:</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Homework 4 continues...
Question 2: B Tree ... [20 points]

On separate page, with ‘[course-id] [hw#] [question#] [andrew-id] [your-name]’

Produce the most dense possible B-tree of order \(d = 1 \), containing as keys the integers 1 through 8 inclusive.

(a) i. [3 points] How many nodes does the structure have?

Solution: 4

ii. [4 points] Draw the final structures.

Solution:

(b) Produce the most sparse B-tree of order \(d = 1 \), containing the keys 1 through 7 inclusive.

i. [3 points] How many nodes does the structure have?

Solution: 7

ii. [4 points] Draw the final structures.

Solution:

(c) [6 points] Consider an empty B tree of order \(d = 2 \). Using the standard B-tree algorithm given in the foils (2-to-1 split, no deferred splits), insert keys from 1 to 10 (inclusive), in order. Draw the final structure.

Solution:

Homework 4 continues...
Question 3: B+ Tree .. [20 points]

On separate page, with ‘[course-id] [hw#] [question#] [andrew-id] [your-name]’

Consider the following B+ tree (This is Figure 10.29 of the textbook (Ed 3., p.367)). For each part, draw the tree after the specified operation.

![B+ tree diagram](image)

Figure 1: B+ tree.

- For each part of the problem, disregard previous parts and apply the instruction on the tree structure in Figure 1.
- With respect to “≥”, follow the convention used in the textbook, that is, the left pointer is for <, the right one for ≥.

(a) **[3 points]** Insert 17*.

Solution:

![Solution diagram A]

(b) **[5 points]** Starting from the B+tree of Figure 1 insert 31*.

Solution:

![Solution diagram B]

In case of merge, if you can borrow from both siblings, choose the one on the right.

(c) **[4 points]** Starting from the B+tree of Figure 1 delete 7*.

Solution:

![Solution diagram C]

(d) **[4 points]** Starting from the B+tree of Figure 1 delete 24*.

Solution:

![Solution diagram D]

Question 3 continues...
(e) [4 points] Starting from the B+tree of Figure [1], delete 14*.

Solution:

Grading info: Full points, if they borrow keys from left sibling, i.e.:
Grading info: leftmost leaves: (2*,3*) (5*,7*,16*) with (5,...) at root
Grading info: or: (2*,3*,5*) (7*,16*) with (7,...) at root
Question 4: Extendible Hashing [16 points]

On separate page, with ‘[course-id] [hw#] [question#] [andrew-id] [your-name]’

Consider the following extendible hashing structure. (Figure 11.14 of the textbook (Ed. 3, p.387)), also repeated as Figure 2 for your convenience.

![Extendible Hashing Diagram](image)

- Unless explicitly specified, every sub-question is to be done on the hash table of Figure 2.
- Notice: small discrepancy between foils and textbook - please use the textbook convention, as does Figure 2. Specifically, the textbook has that keys in the same bucket, agree on the suffix of their hash value; in the foils, they agree on the prefix.

(a) [4 points] Which buckets will be split if you insert the following records in order: 26, 27, 28, 19?

Solution: Bucket D, Bucket A2

(b) Starting from Figure 2, we want a record (positive integer) that is smaller than 36 and that will cause Bucket A2 to split.

i. [4 points] Give such an integer

Solution: 28

ii. [4 points] Show the contents of the two resulting buckets after the split
Solution: A2: 4, 20, 36, A3: 12, 28

(c) [4 points] Starting from Figure 2, how many buckets will remain after deleting the following records in order: 16, 64?

Solution: 4

Homework 4 continues...
Question 5: Linear Hashing .. [16 points]

On separate page, with ‘[course-id] [hw#] [question#] [andrew-id] [your-name]’

Consider the following linear hashing structure.

![Figure 3: Linear Hashing](image)

- This is a modified version of Figure 11.16 of the textbook (Ed. 3, p.389) with added entry ’14’ next to 10. Notice that the exercise is similar to Exercise 11.9, in the book.
- Feel free to check the solutions of the odd-numbered exercises, on the web.
- Assume that a bucket split occurs whenever an overflow page is created.

(a) [4 points] What is the maximum number of data entries that can be inserted in the best-case scenario, before you have to split a bucket?

Solution: 5

(b) [4 points] Starting from Figure 3, draw the file after inserting the smallest possible single record whose insertion causes a bucket split.

Question 5 continues...
Solution:

-1 for not drawing correct h1
-2 for using a number higher than the smallest possible
-3 for not drawing buckets A1 and A2
-4 for not including a drawing

(c) [4 points] Starting from Figure 3, which bucket would 128 be inserted into?

Solution: Bucket A

(d) [4 points] Starting from Figure 3, what is the smallest positive integer that can be inserted into the bucket A?

Solution: 4
Question 6: Sorting ... [12 points]

On separate page, with ‘[course-id] [hw#] [question#] [andrew-id] [your-name]’

You are sorting a file with N pages and you have B buffer pages. Consider the following scenarios and give the total I/O cost for sorting, in each scenario. (Use the algorithm shown in p.427 of the textbook.)

- HINT: This is a modified version of Exercise 13.1 in the textbook.
- Feel free to study the answers to the odd-numbered exercises, that are on the web.

(a) [4 points] A file with $N = 100,000$ pages and $B=3$ available buffer pages.

Solution: 34×10^5

(b) [4 points] A file with $N = 500,000$ pages and $B=7$ available buffer pages.

Solution: 8×10^6

(c) [4 points] A file with $N = 3,000,000$ pages and $B=20$ available buffer pages.

Solution: 36×10^6

note: No partial points were given on this question