
15-415/615
Database Applications

Spring 2015

Vinaykumar Bhat

Jiayu Liu

Carnegie Mellon University

HW3: B+ Tree (Recitation)

Overview

• You are given a basic B+ tree implementation

• Task: extend the B+ tree implementation for
new operations

• Goal: get familiar with B+ tree and recursive
code that manipulates the tree & pages

2

Why B+ tree?

• large fan out
• balanced and shallow
• efficient for slow I/O devices (i.e. risks)
• for more detail - check the slides (http:

//www.cs.cmu.edu/~christos/courses/dbms.
S15/slides/09TreeStructureIndices.pdf)

3

Basic B+ Tree Implementation

• Creates an “inverted index” in the form of a
B+ tree
– key: word, value: document name

• Supports: insert, scan, search, print

• No duplicate keys are allowed

• No support for deletion

• The tree is stored on disk

4

B+ Tree Package

• Folders
– DOC: documentation

– SRC: source code

– Datafiles : sample documents data

– Tests: test files

• B-TREE_FILE, POSTINGSFILE, TEXTFILE, parms
are created by the b+ tree.
– Want a new tree? Delete them

5

B+ Tree Structure

B-TREE_FILE POSTINGSFILE TEXTFILE

am
er

ic
an

us
ua

l
american beauty
..

usual
suspect
…

american history
X

6

Structure of a Page (def.h)

‘N’ or ‘L’

Page Number

Next Leaf Page No

NumBytes NumKeys

KeyListPtr

Ptr to the rightmost child

For leaf pages only

For non-leaf pages only

Page Number

KeyLen

Key Ptr “aaa”
Posting Ptr

Next
posting
file

page
containing
keys<“aaa”

Page Number

KeyLen

Key Ptr “aab”
Posting Ptr

Next

PageHdr

KeyRecord
KeyRecord

≤ 3
≤ 7 > 7> 3

7

. . .

Existing Functions

• C : print all the keys

• i <document_name> : insert the document
– key: word, value: document_name

• p <page_no> : print the info on the page

• s <key> : search the key

• S <key> : search the key, and print the
documents

• T : print the tree
Demo

8

Example code, for searching

• search.c
• search function entrance, used in main.c
• calls treesearch to locate the page to which the key

belongs

• treesearch.c
• recursive call to locate the page for the key
• calls FindPageNumOfChild to find the correct

children (looks down)

• FindPageNumOfChild.c
• traverse a non-leaf page

9

To be implemented

• #: Display the number of pages fetched (in any
operation prior to this)

• > key n: Fetch and display ‘n’ keys which are
successor to ‘key’

• < key n: Fetch and display ‘n’ keys which are
predecessor to ‘key’

10

To be implemented: count (#)

11

• Should display the number of pages fetched
by the command prior to this

• Print and reset

• Hint: Try to leverage existing functionalities

To be implemented: successor (>)

● > key n
● Display the ‘n’ successors key-strings of ‘key’
● Use the count command (#) to check your

efficiency
● Hint: Try to leverage existing functionalities

12

To be implemented: predecessor(<)

● < key n
● Display the ‘n’ predecessor key-strings of

‘key’
● Use the count command (#) to check your

efficiency
● Hint 1: Try to leverage existing functionalities

(though may not be straightforward)
● Hint 2: Think of recursion / backtracking

13

Keep in Mind

● The ‘count’ is not a hard limit.
○ May not exactly match the reference count
○ Should be reasonable

● A fully sequential scan is a strict no-no
○ Will show up as a very large count

● Will be graded to check for efficiency later.
○ Again ‘sequential’ scans will be penalized

● Understand the provided infrastructure before
starting!

14

Build Infra (makefile)

● make load
○ Initialize the tree
○ Insert all datafiles

● make test_sanity
○ Runs load
○ Tests the very minimal functionality. No diffs = test

pass!
○ make sure the output is formatted. This is absolutely

necessary for autograding

● make test_successor/make test_predecessor
○ The questions asked in the handout

15

Testing Mechanism

• Correctness
– output the correct list of words (don’t forget to

check all the corner cases!)

• Format
– Make sure the output follows the same format as

the sanity test solutions.

16

Hand-in

• Create a tar file of your source code, as well as
the makefile. (make handin)

• Hard-copy of a document with the functions
that you modified/added.

• Please make sure that the “make” command
compiles all the source code without any
errors

• Submit your code on blackboard.

17

Questions?

• Come to office hours (5 TAs + instructor)
• Read the handout before starting

• Post your questions on blackboard

18

