
Carnegie Mellon University
Department of Computer Science
15-415/615 - Database Applications

C. Faloutsos & A. Pavlo, Spring 2015

Homework 3 (by Vinaykumar Vittal Bhat / Jiayu Liu)
Due: hard and e-copy, at 1:30pm, 2/19/2015

IMPORTANT - Deliverables
1. Hard copy, in class:

(a) The answers of your code to all questions, as well as
(b) any new or modified code you created.

Staple everything together, and type the usual info on the top (course#, etc)
2. Online, on “blackboard”: a tar-file ([andrew-id]-HW3.tar.gz) of your code. Run-

ning make should compile it and pass all the tests.

Reminders:
• Platform: We shall run and grade your program on the andrew linux machines.
• Plagiarism: All homework is to be completed individually.
• Typeset all of your answers
• For late homeworks: email it (a) to all TAs (b) with the subject line exactly 15-415

Homework Submission (HW 3) and (c) the count of slip-days you are using.
• Recitations: there will be two recitations, as announced:

– Wed 2/11, 01:30-02:20pm, WeH 5302, by Jiayu
– Wed 2/18, 01:30-02:20pm, WeH 5302, by Vinay

For your information (FYI):
• Expected time: 10-20 hours (≈2-4 hours for page counter and familiarization with the

code; 3-6h for k successors ; and 5-10h for k predecessors.
Revision : 2015/02/09 20:06

1

15-415/615 Homework 3, Page 2 of 8 due: 2/19/2015, 1:30pm

1 Preliminaries - Our B+ Tree Implementation

The goals of this assignment to make you more familiar with the B+ Tree data structure,
especially the traversal and search functionalities.

Specifically, you are given a basic B+ Tree implementation and you are asked to extend it
by implementing some new operation/functions, that we list later. (see bottom of Table 1).

1.1 Where to Find Makefiles, Code, etc.

The file is at http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW3/btree.tar.
gz

Quick-start guide:
1. G-unzip and untar the file.
2. make load # compiles everything and loads the data files
3. ./main # to try out the program - e.g. S alex

4. make # like load, but it also runs tests - only the first test succeeds, on purpose
5. make test search # the first test - should always work

Explanations
• make load inserts the entire collection of documents (actually, a dictionary, split into

thousands of files). Then, you can search for the key, say “alex”, and see the contents
of the documents containing the search key.

• make runs some tests against the code, and compares (diff) the output against the
correct output. When your code is implemented correctly, then make should report all
tests as successful.

• make test search runs the very first test, which should pass out-of-the-box.

1.2 Description of the provided B+ tree package

The specifications of the provided implementation are:
1. It creates an “inverted index” in alphabetical order in the form of a B+ tree over a

given corpus of text documents.
2. It supports the operations in Table 1 (insert, scan, search, etc).
3. No duplicate keys are allowed in the tree. FYI: It uses a variation of “Alternative 3”

and stores a postings list for each word that appears many times.
4. It does not support deletions.
5. The tree is stored on disk, since it is persistent.

The directory structure and contents are as follows:

• DOC: contains a very useful documentation of the code.
• SRC: the source code.
• Datafiles: data documents, to insert to the tree.

Homework 3 continues. . .

http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW3/btree.tar.gz
http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW3/btree.tar.gz

15-415/615 Homework 3, Page 3 of 8 due: 2/19/2015, 1:30pm

• Tests: some sample tests and their solutions.
• Some other useful files, e.g., README, makefile etc.
• IMPORTANT: Make sure you do not delete the files B-TREE FILE, POSTINGSFILE,

TEXTFILE, parms - they are created by the B+ tree implementation, they should be in
the same directory as ./main, and they are necessary, to make the B+tree persistent.

In more detail, the main program file is called “main.c.” It waits for the user to enter
commands and responds to them as shown in Table 1.

ARGUMENT EFFECT
C Prints all the keys that are present in the tree, in ascending lexicographical

order.
i arg The program parses the text in arg which is a text file, and inserts the

uncommon words (i.e., words not present in “comwords.h”) into the B+
tree. More specifically, the uncommon words of arg make the “keys” of the
B+ tree, and the value for all these keys is set to arg. Since this tree enables
us to find which words are present in which documents, it is known as the
inverted index.

p arg Prints the keys in a particular page of the B+ tree where arg is the page
number. It also prints some statistics about the page such as the number of
bytes occcupied, the number of keys in the page, etc.

s key searches the tree for key (which is a single word). If the key is found, the
program prints “Found the key!”. If not, it prints “Key not found!”.

S key Searches the tree for key. If the key is found, the program prints the docu-
ments in which the key is present, also known as the posting list of key. If
not, it prints “Key not found!”.

T preTty-prints the tree. If the tree is empty, it prints “Tree empty!” instead.
x exit

[Not implemented yet] prints and resets the counter for the number of
FetchPage calls

> key k [Not implemented yet] finds and prints the k successors in the B+ tree
for the given key

< key k [Not implemented yet] finds and prints the k predecessors in the B+ tree
for the given key

Table 1: B+ tree command interface - the last 3 commands are to be implemented

2 Your tasks

Your task is to implement the last three commands shown in Table 1. Their detailed behavior
is as follows:

Homework 3 continues. . .

15-415/615 Homework 3, Page 4 of 8 due: 2/19/2015, 1:30pm

Prints and resets the number of page fetches (from disk) in the current program. Specif-
ically it means the number of FetchPage function calls. (We need it for debugging
and grading, to make sure the code avoids needless sequential scans).

> key k Search for up to k successors of the given key in the B+ Tree, sorted lexicograph-
ically. The key should not be included in the result, regardless whether the key is in
the tree or not. If there are less than k successors in the B+ tree, the result should
return them, even if they are less than k.

< key k Search for up to k predecessors of the given key in the B+ Tree, sorted lexicograph-
ically. Again, the key should not be included in the result; and a shorter-than-k list
should be returned, when there are not enough predecessors.

2.1 Details

• Efficiency: Your code should not resort to sequential scanning - that is, it should
require way less than L leaf accesses, where L is the number of leaves of the B+ tree
(≈ 70, 000, in our setting).

• More examples: The correct responses for some additional queries are in Table 2.
• Rudimentary testing: As can be seen from the provided makefile, running
make test sanity

will do a minimal “sanity check” of your code on a few queries, and diff its results
with the correct ones.

• Additional testing: Passing the few supplied tests of make test sanity, is neces-
sary, but not sufficient, for a good grade - please make sure you do your own, additional
testing, for as many corner cases as you can think: empty tree, search key out of range,
etc.

• Page count: we will allow for small variations for the page count results - as long as
the code is faster than linear (O(N)), that is, it does not do needless sequential scans.

Next, we give you the list of questions; run your code and hand in its responses on the
hard copy. The first four questions have the same format (same six parts), and they only
differ by the search key (hercules, onomatopoeia, etc). Please make sure you use the exact
dataset and parms file as in the provided tar-file.

Homework 3 continues. . .

15-415/615 Homework 3, Page 5 of 8 due: 2/19/2015, 1:30pm

Question 1: Successors and Predecessors search in a B+ Tree[100 points]

(a) For the key hercules answer the following questions:

i. [1 point] Does the word exist in the document (using the command s key)?

ii. [1 point] How many pages are read in order to see if the word is in the tree?

iii. [4 points] What are the 5 successor of the key in the tree, sorted lexicograph-
ically?

iv. [2 points] How many pages are read in order to fetch them?

v. [5 points] What are the 5 predecessors of the key in the tree, sorted lexico-
graphically?

vi. [2 points] How many pages are read in order to fetch them?

(b) For the key onomatopoeia answer the following questions:

i. [1 point] Does the word exist in the document (using the command s key)?

ii. [1 point] How many pages are read in order to see if the word is in the tree?

iii. [4 points] What are the 5 successor of the key in the tree, sorted lexicograph-
ically?

iv. [2 points] How many pages are read in order to fetch them?

v. [5 points] What are the 5 predecessors of the key in the tree, sorted lexico-
graphically?

vi. [2 points] How many pages are read in order to fetch them?

(c) For the key sesquipedalian answer the following questions:

i. [1 point] Does the word exist in the document (using the command s key)?

ii. [1 point] How many pages are read in order to see if the word is in the tree?

iii. [4 points] What are the 5 successor of the key in the tree, sorted lexicograph-
ically?

iv. [2 points] How many pages are read in order to fetch them?

v. [5 points] What are the 5 predecessors of the key in the tree, sorted lexico-
graphically?

vi. [2 points] How many pages are read in order to fetch them?

(d) For the key malloc answer the following questions:

i. [1 point] Does the word exist in the document (using the command s key)?

ii. [1 point] How many pages are read in order to see if the word is in the tree?

iii. [4 points] What are the 5 successor of the key in the tree, sorted lexicograph-
ically?

iv. [2 points] How many pages are read in order to fetch them?

v. [5 points] What are the 5 predecessors of the key in the tree, sorted lexico-
graphically?

vi. [2 points] How many pages are read in order to fetch them?

(e) [40 points] We will test your code on several “secret” settings, which we will
publish after the due date. Test for as many corner cases as you can, to get full
points here.

Question 1 continues. . .

15-415/615 Homework 3, Page 6 of 8 due: 2/19/2015, 1:30pm

S alex > alex 26 < alex 26

enter search-word: word=? word=?

*** Searching for word alex k=? k=?

found in alex found 26 successors: found 26 predecessors:

-------document #1----- alexander alethea

rembrandtism alexanders alethiology

sinomenine alexandra alethopteis

inductorium alexandreid alethopteroid

alex alexandrian alethoscope

resoothe alexandrianism aletocyte

usuary alexandrina aletris

sulphatase alexandrine alette

eurythmical alexandrite aleukemic

buffont alexas aleurites

ridgepoled alexia aleuritic

salvadoraceous alexian aleurobius

cytopathologic alexic aleurodes

nonbursting alexin aleurodidae

clapping alexinic aleuromancy

batholith alexipharmacon aleurometer

octachord alexipharmacum aleuronat

tautometric alexipharmic aleurone

clockroom alexipharmical aleuronic

eta alexipyretic aleuroscope

ensate alexis aleut

spiropentane alexiteric aleutian

renomination alexiterical aleutic

unsentimentalist alexius aleutite

schemeful aleyard alevin

remissly aleyrodes alewife

#

of reads on B-tree: 11 # of reads on B-tree: 19 # of reads on B-tree: 29

(a) (b) (c)

Table 2: Expected responses, to additional, example queries: (a) ‘S’ for ‘search for word’;
(b) ‘>’ for ‘successors search’, and (c) ‘<’ for ‘predecessors search’.

Question 1 continues. . .

15-415/615 Homework 3, Page 7 of 8 due: 2/19/2015, 1:30pm

2.2 Clarifications/Hints

• Your implementation should be case insensitive. All keys are inserted after converting
them to lower case.

• Make sure all searches are only for alphanumeric strings.
• Rudimentary testing: running make, or, more detailed

– make test sanity

should return success. make test sanity tests your implementation for the > and <

commands, respectively. If diff is empty for both of them, then your implementation
passes the provided tests! Please refrain from changing these tests as they serve as a
check-point for the expected output format.

• Automatic grading: FYI, we will do make grade. Please leave unchanged the grade

target in the makefile.

Hints, and optional information:
• For your convenience, we have provided the following place-holder files:

– stats.c

– get successors.c

– get predecessors.c

• Hint: Implementing get successors.c should be easier than get predecessors.c.
• We recommend the use of source code version control tools, like ’git’, ’mercurial’, or

’svn’.
• For your convenience, we have also provided you with most of the queries, for the ques-

tions above (hercules etc). Within the Tests/ directory, check test successors.inp

and test predecessors.inp. Feel free to modify those input files, if you want to
automate the generation of your answers for the hard-copy deliverable.

3 Testing and Grading

We will test your submission for correctness using scripts, and also look through your code.

Correctness. As we said earlier, an easy, minimal check is through: make test sanity -
your code should pass. However, please make sure you test your code on additional
settings, of your own. Consider corner cases (e.g., empty tree, invalid inputs, non-
existent words etc.). As mentioned, we will use several, additional, “secret” test cases
to grade your code.

Output Format. If make test sanity is successful, you have the right output format.

Code. We will check the functions that you created/modified to support the required op-
erations (e.g., stats.c, etc).

Question 1 continues. . .

15-415/615 Homework 3, Page 8 of 8 due: 2/19/2015, 1:30pm

4 What to hand-in

As we said in the front page, we want both a hard copy of the changed functions; and a
tar-file with everything we need to run our tests.

1. Hard copy: in class, please submit
(a) your answers to the questions listed, and
(b) all the changes that you made to the source code.

Please hand-in only the functions that you added / changed.
2. Online:

• Create [your-andrew-id]-HW3.tar.gz, a (compressed) tar file of your complete
source code including only and all the necessary files, as well as the makefile

(i.e., exclude *.o *.out etc files);
• Submit your tar file via blackboard, under Assignments / Homework 3.

For your convenience, make handin automates the collection of deliverables. However, it is
your responsibility to make sure everything is included properly.

End of Homework 3

	Preliminaries - Our B+ Tree Implementation
	Where to Find Makefiles, Code, etc.
	Description of the provided B+ tree package

	Your tasks
	Details
	Clarifications/Hints

	Testing and Grading
	What to hand-in

