CARNEGIE MELLON UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
15-415/615 - DATABASE APPLICATIONS

C. FaLoutsos, A. PAvLO , SPRING 2015

Homework 2 (by Elomar Souza)
Due: hard and e-copy, at 1:30pm, Feb. 10, 2015

VERY IMPORTANT:

1. OPTIONAL: by Thu 2/5, verify you logged in on postgres, by responding to the test
question on the Blackboard (0 points).

2. Electronic copy of a tar-file with your queries, via Blackboard, before the due date
(Feb. 10, 2015, 1:30pm). See page [2| (' What to deliver’), for details.

3. Hard copy of your SQL queries, and your output, in class at 1:30pm, on Tuesday,
Feb. 10, 2015.

Reminders

e Plagiarism: Homework is to be done individually.

e Typeset all of your answers. Handwritten work will get zero points.

e Late homeworks: Standard policy: email (a) to all TAs, (b) with the subject line
exactly 15-415 Homework Submission (HW 2), and (c) the count of slip-days you are
using.

For your information:

e Graded out of 100 points

e 4 questions total

e Expected effort: =~ 4-10h (1-2h to set up postgres; 1-2h per question).

Revision : 2015/02/02 04:11

Question Points | Score

Oscar Nominations: Part | 25

Oscar Nominations: Part 11 25

Steelers Season 25
Gerrymandering] 25
Total: 100

15-415/615 Homework 2, Page 2 of 6 Feb. 10, 2015, 1:30pm

Preliminaries

Postgres set-up

Before starting the homework, follow the instructions for setting up PostgreSQL and im-
porting the data we’ll be working with, available at http://www.cs.cmu.edu/~christos/
courses/dbms.S15/hws/HW2/postgresql-setup.html.

What to deliver: Check-list

The three items, as mentioned on the front page:
1. OPTIONAL (0 points):
e What: the answer to the test question
e When: Thu Feb. 5
e Where: on Blackboard
Our goal is to remind you to log-in on postgres, to avoid last-minute issues.
2. MANDATORY - hard copy:
e What: hard copy of your SQL queries, plus their output.
e When: Feb. 10, 2015, 1:30pm
e Where: in class
As before, please separate your answers for each question, providing on all answers the
usual information (course#, Homework#, Question#, Andrew ID, name).
3. MANDATORY - tar-file:
e What: A tar file (<your-andrew-id>.tar) with all your code - no need to include
the answers.
e When: Feb. 10, 2015, 1:30pm
e Where: on Blackboard, under "Assignments’ /"Homework #2’
Please use the template provided at www.cs.cmu.edu/~christos/courses/dbms.S15/
hws/HW2/hw2. tar|- just insert your SQL query to each place-holder .sql file.
The goal is that, when the grader types make, he/she should see all your answers to
all the questions.

FAQs

e (): May we use views?

e A: Yes - you may use any feature of SQL that is supported by postgres on the andrew
linux machines.

o (): What if a question is unclear?

e A: Please post on blackboard; or write down your assumptions, and solve your inter-
pretation of the query. We will accept all reasonable interpretations.

Homework 2 continues. ..

http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW2/postgresql-setup.html
http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW2/postgresql-setup.html
http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW2/postgresql-setup.html
http://www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW2/postgresql-setup.html
www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW2/hw2.tar
www.cs.cmu.edu/~christos/courses/dbms.S15/hws/HW2/hw2.tar

15-415/615 Homework 2, Page 3 of 6 Feb. 10, 2015, 1:30pm

Question 1: Oscar Nominations: Part I............... [25 points]
On separate page, with ‘[course-id] [hw#] [question#] [andrew-id] [your-name]’

For this question you will look into Oscar nominations throughout history in four cat-
egories: “Leading Actor”, “Leading Actress”, “Supporting Actor”, and “Supporting
Actress”. Figure [1] gives the schema of the tables you will use. For example, the tuple
in the nominations table

(1142, 1939, 3, 602, ”Gone with the Wind”, ”Scarlett O’Hara”, t)

means that the #1142 nomination record was in the year 1939, for person #602 (=Vivien
Leigh), for category #3 (=Leading actress), for the role of ”Scarlett O’Hara”, in the
movie ”Gone with the Wind” - and did indeed win.

(a)
(b)

()

= nominations [table]
categories [table] _ :
- : id serial not null
id serial not null _
. auto-incremented
auto-incremented ,
"year" int4
name varchar . .
category_id int4
person_id int4
movie varchar
people [table]
. . "character" varchar
id serial not null
. won bool
auto-incremented

first name varchar
last name varchar

Figure 1: Tables for Oscar Nominations

[1 point] (Warm-up): List all 4 categories (id and name), sorted on name.

[6 points] List the unique titles (movie), of all movies nominated in 1990, sorted
alphabetically.

[6 points] List the most common first name for a person, and the count of people
that have this first name. (E.g., return ("Mary”, 23), if there are 23 actresses named
"Mary”, and no other first name is that popular). If there is a tie, give only the
alphabetically first one. (Hint: Check the 1limit keyword.)

[6 points] Super-movie(s): List the movie name , and year, for the movie that
attracted the highest count of nominations in the history of Oscars. If more than
one such movie exists, list them all (movie, year), sorted on movie name.

[6 points] List the unique last names of actors nominated for the Leading Actor
category between 2000 and 2002, ordered alphabetically.

Homework 2 continues. ..

15-415/615 Homework 2, Page 4 of 6 Feb. 10, 2015, 1:30pm

Question 2: Oscar Nominations: Part IT............. [25 points]
On separate page, with ‘[course-id] [hw#] [question#] [andrew-id] [your-name]’

For this question we will continue looking into Oscar nominations, using the same tables,
of Figure [1}

(a) [5 points| Super actors/actresses: List the first and last names of the 5 people
that won the most awards, and how many awards each one won. Sort in reverse
award count (highest winner, first); break ties alphabetically by first name; then
by last name. If more than 5 people qualify, give the first 5 only, using the 1imit
SQL keyword, and favoring the alphabetically-smaller names (same rules as for
tie-breaking, above).

(b) [10 points] The "Susan Lucci” query:E] List the first name, last name, and number
of nominations of the person who had the most nominations but never won an award.
In case of a tie, use 1limit, to return the alphabetically-first person (smallest first
name; on tie on that, return the one with the smallest last name).

(c) [10 points] Remakes: A movie is a remake if it has the same title as an older
movie. (And, almost always, it has the same plot.) List all cases where both the
original movie and its remake were nominated for an award. Specifically, list the
name of the movie, the year the original came out, and the year the remake came
out, ordered alphabetically. For example, the first (and maybe, the only) remake
tuple, is shown in Table [I]

movie ‘ yearOriginal ‘ yearRemake

A Star Is Born 1937 1954

Table 1: The first tuple of the “remakes” query.

'FYI, Susan Lucci is an actress that was nominated 19 times for Lead Actress in the Emmy Awards,
before winning for the first time in 1999. Comic shows made fun of the situation, making her famous.

Homework 2 continues. ..

15-415/615 Homework 2, Page 5 of 6 Feb. 10, 2015, 1:30pm

Question 3: Steelers Season..................ooviin. [25 points]
On separate page, with ‘[course-id] [hw#] [question#] [andrew-id] [your-name]’

For this question you will look into all the games played by the Pittsburgh Steelers in
the 2014/2015 season. Here is the schema we will use, shown in Figure 2] The id is an
integer (1 to n, for each of the n games that the Steelers played).

games [table]
id serial not null

auto-incremented
oponent varchar

points_scored int4
points_suffered int4

Figure 2: Table for Steelers games

List the cumulative balance after each game, ordered by id. The balance of a game is
the difference between points scored minus points suffered. The cumulative balance for
game 1, is the sum of balances for all games up to and including game i. For example,
for the data we provided in the postgres-dump, Figure [3| shows the cumulative balance
of Steelers, for their first two games.

1d ‘ opponent ‘ cumulativeBalance
1 | Cleveland Browns 3
2 | Baltimore Ravens -17

Figure 3: First lines of correct response.

Hint: Try a #-join - actually, a #-self-join.

Homework 2 continues. ..

15-415/615 Homework 2, Page 6 of 6 Feb. 10, 2015, 1:30pm

Question 4: Gerrymandering [25 points]
On separate page, with ‘[course-id] [hw#] [question#] [andrew-id] [your-name]’

Preliminaries: Gerrymandering is, according to Wikipedia, a practice that attempts
to establish a political advantage for a particular party or group by manipulating district
boundaries to create partisan advantaged districts.

For this question, we will simplify the problem, and assume that the n cities of this
country are on a line, in positions 1, 2, ... n. (The real, 2-d-rectangle version of the
problem can also be answered with SQL, but we will not do it here).

In this 1-d setting, you are given a numbered list of cities, with the votes-balance for
your favorite party (party 'X’) in each city. See Figure || for an example with n=>5 cities.

id | name votes_balance
1 | Charlotte -5
2 | Raleigh 10
3 | Greensboro -3
4 | Durham 20
5 | Winston-Salem -30

Figure 4: Example table

Your task: Find the range (start_id, end_id) of cities, to give party 'X’ the best
voting advantage, that is, the largest sum of votes-balance. Specifically, list the id and
name of the starting and ending city, and the votes-balance for that range.

For example, for the instance of Figure [d], your code should return the table of Figure 7]
where range_votes_balance = 10-3+20.

start_id ‘ start_name ‘ end_id ‘ end_name ‘ range _votes_balance
2 ‘ Raleigh ‘ 4 ‘ Durham ‘ 27

Figure 5: Response to example table

Break ties in favor of the smallest start_id (and, further on, of the smallest end_id).

Hint: This is a generalization of the cumulative sum of question #3. Thus, here we need
several #-self-joins.

End of Homework 2

http://en.wikipedia.org/wiki/Gerrymandering

