Homework 6

IMPORTANT
- **Deposit hard copy** of your answers in **class at 1:30pm on Tue, 3/25/2014.**
- Separate answers, as usually, i.e., please solve each of the 4 questions on a separate page, and type the usual, full information, on each page: your **name, Andrew ID, course #, Homework #, and Question #.**

Reminders
- **Plagiarism:** Homework may be discussed with other students, but all homework is to be completed **individually.**
- **Typeset** all of your answers whenever possible. Illegible handwriting may get no points, at the discretion of the graders.
- **Late homeworks:** please email late homeworks
 - to all TAs
 - with the subject line exactly **15-415 Homework Submission (HW 6)**
 - and the count of slip-days you are using.

For your information:
- Graded out of **100 points; 4 questions total**
- Rough time estimate: \(\approx 6\) hours (1-2 hours for each question)

Question Points Score

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Optimization</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Functional Dependencies</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Decompositions</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Normal Forms</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Revision: 2014/05/05 16:59
Question 1: Query Optimization . [30 points]
Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: __________; andrew-id: ______________; late days:

For this problem we consider a database with following three tables:
1. Movies(title, year)
2. Actors(actorID, name)
3. Acted_in(actorID, title, year)

For these tables we know the following statistics:
• Movies consists of \(N_1 = 50,000 \) tuples
 – \(V(\text{title}, \text{Movies}) = 30,000 \) distinct movie titles
 – \(V(\text{year}, \text{Movies}) = 90 \) distinct years (1925-2015)
• Actors consists of \(N_2 = 200,000 \) tuples
 – \(V(\text{actorID}, \text{Actors}) = 200,000 \) distinct actor ID’s
 – \(V(\text{name}, \text{Actors}) = 160,000 \) distinct names
• Acted_in consists of \(N_3 = 1,000,000 \) tuples
 – \(V(\text{actorID}, \text{Acted_in}) = 180,000 \) distinct actor ID’s
 – \(V(\text{title}, \text{Acted_in}) = 29,000 \) distinct movie titles
 – \(V(\text{year}, \text{Acted_in}) = 90 \) distinct years (1925-2015)

(a) Yes/No questions:
 i. [3 points] Ignoring semantics, and given the above statistics, could title be a candidate key for Movies?
 □ Yes ■ No
 ii. [3 points] Again, ignoring semantics, could actorID be a candidate key for Actors?
 ■ Yes □ No
 iii. [3 points] Could actorID be a candidate key for Acted_in?
 □ Yes ■ No

(b) Selectivity estimations. Give fourth significant digit accuracy. No partial credit will be given.
 i. [3 points] Estimate the number of resulting tuples for the query:
 `SELECT * FROM Movies WHERE year = 1995;`
 i. 555.5555
 Solution: (Optional) justification: \(N_1/90 \)
 ii. [4 points] Estimate the number of resulting tuples for the query:
 `SELECT * FROM Movies
 WHERE year = 2000 AND title = “Dude, Where’s my Car?”;`
 ii. 0.018518
Solution: (Optional) justification: $N_1/90/30,000$

iii. [4 points] Estimate the number of resulting tuples for the query:

```sql
SELECT * FROM Movies WHERE year > 1960;
```

iii. **30000**

Solution: (Optional) justification: $N_1^{54}/90$
Because not well specified, will also accept $30555.5555 = N_1^{55}/90$

iv. [5 points] Estimate the number of resulting tuples for the query:

```sql
SELECT *
FROM Actors JOIN Acted_in AS Ai
ON Actors.actorID = Ai.actorID;
```

iv. **1000000**

Solution: (Optional) justification: actorID is a primary key in Actors and a foreign key in Acted_in. Therefore, $N_2 \cdot N_3/200000$

v. [5 points] Estimate the number of resulting tuples for the query:

```sql
SELECT *
FROM Movies JOIN Acted_in AS Ai
ON Movies.year = Ai.year AND Movies.title = Ai.title;
```

v. **18518.5185 or 1,000,000**

Solution: (Optional) justification: There are two ways to view this question. If you assume that (title,year) is the primary key of Movies and are foreign keys in Acted_in then the answer is 1,000,000. However, we do not explicitly make these assumptions so the estimated number of tuples could be calculated as $N_1 \cdot N_3 \cdot \frac{1}{90} \cdot \frac{1}{30000}$.
Question 2: Functional Dependencies [20 points]
Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: ______________________________; andrew-id: __________________________; late days:

2.1 (This question is a modified version of exercise 19.6 in the textbook.) For the first set of questions consider the following legal instance of a relational schema S with attributes ABC:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>b</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 1: Legal instance of schema S for question 2.1

(a) Which of the following dependencies are violated by the instance of S in Table 1:

i. [1 point] □ Yes ■ No : $A \rightarrow B$ is violated.
 ii. [1 point] ■ Yes □ No : $B \rightarrow A$ is violated.
 iii. [1 point] □ Yes ■ No : $BC \rightarrow A$ is violated.
 iv. [1 point] ■ Yes □ No : $B \rightarrow C$ is violated.
 v. [1 point] ■ Yes □ No : $C \rightarrow AB$ is violated.

(b) [1 point] By only observing the instance of S in Table 1 can you identify the functional dependencies that hold on schema S?
 □ Yes ■ No

Solution: No, because we can only see an instance.

2.2 For the next set of questions consider the relational schema $r = \{P, Q, R, S, T, U, V\}$ and the set of functional dependencies FD:

$$
\begin{align*}
P & \rightarrow S \\
PQ & \rightarrow ST \\
S & \rightarrow RU \\
RU & \rightarrow S \\
PT & \rightarrow V
\end{align*}
$$

(a) [3 points] Which of the following is a minimum cover of the FD?

(a) The given FD is a minimum cover.
(b) $\{P \rightarrow S; PQ \rightarrow T; PQ \rightarrow S; S \rightarrow R; S \rightarrow U; PT \rightarrow V; RU \rightarrow S\}$
(c) $\{P \rightarrow R; P \rightarrow U; PQ \rightarrow T; PT \rightarrow V\}$
(d) $\{P \rightarrow S; PQ \rightarrow T; S \rightarrow R; S \rightarrow U; PT \rightarrow V; RU \rightarrow S\}$
(e) none of the above - the cover is __________________________

Question 2 continues...
(b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(5))?
 i. [1 point] ■ Yes □ No : $P \rightarrow U$
 ii. [2 points] ■ Yes □ No : $PT \rightarrow SV$
 iii. [1 point] □ Yes ■ No : $SQ \rightarrow V$
 iv. [1 point] □ Yes ■ No : $PS \rightarrow RV$
 v. [1 point] ■ Yes □ No : $PQ \rightarrow V$
 vi. [1 point] □ Yes ■ No : $PSRU \rightarrow QT$

(c) [2 points] True or False: The attribute closure $\{P\}^+$ is $\{R, S, U\}$.
 □ True ■ False

 Solution: It should include P, ie., $\{P, R, S, U\}$.

(d) [2 points] True or False: The attribute closure $\{PQ\}^+$ is $\{P, Q, R, S, T, U, V\}$.
 ■ True □ False
Question 3: Decompositions [20 points]
Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: __________________________; andrew-id: ________________________; late days:
For this set of questions consider the following relational schema
\[S = \{A, B, C, D, E, F, G\} \]:

\[A \rightarrow D \]
\[AB \rightarrow E \]
\[D \rightarrow C \]
\[D \rightarrow F \]
\[AE \rightarrow G \]
\[CF \rightarrow D \]

Optional, but strong hint: derive the cover of the above functional dependencies.

(a) [3 points] Is the decomposition \(\{ACF, ABEG, AD\}\) lossless?
[] Yes [] No

Solution: Optional Justification: \(A\) is the candidate key in \(AD\) and \(ACF\)

(b) [4 points] Is the decomposition \(\{DCF, ABEG, AD\}\) lossless?
[] Yes [] No

Solution: Yes: \(D\) is a candidate key in \(DCF\), for the join \(AD\) and \(DCF\); and then \(A\) is the candidate key in \(ADCF\), for the join with \(ABEG\)

(c) [4 points] Is the decomposition \(\{ABDE, BEG, ADCF\}\) lossless?
[] Yes [] No

Solution: No: while \(ADCF\) and \(ABDE\) can be joined on \(A\) which is a candidate key for \(ADCF\), the joining attributes \(BE\) are not a candidate key in either \(BEG\), nor \(ABDCFE\)

(d) [3 points] Is the decomposition \(\{ACF, ABEG, AD\}\) dependency preserving?
[] Yes [] No

Solution: We lost both \(CF \rightarrow D\), as well as \(D \rightarrow CF\)

(e) [3 points] Is the decomposition \(\{DCF, ABEG, AD\}\) dependency preserving?
[] Yes [] No

(f) [3 points] Is the decomposition \(\{ABDE, BEG, ADCF\}\) dependency preserving?
[] Yes [] No

Solution: We lost \(AE \rightarrow G\)

Homework 6 continues...
Consider the relation schema \(r = \{P, Q, R, S, T, U, V\} \) and the functional dependencies FD:

\[
\begin{align*}
PR &\rightarrow S \\
P &\rightarrow T \\
PT &\rightarrow R \\
S &\rightarrow U \\
ST &\rightarrow V \\
TV &\rightarrow S \\
QT &\rightarrow V \\
V &\rightarrow Q \\
\end{align*}
\]

Consider the relational schemas:

- \(r_1 = \{P, R, S, T\} \)
- \(r_2 = \{Q, T, V\} \)
- \(r_3 = \{S, T, U, V\} \)

(a) [2 points] What is the projection of the FDs on \(r_1 \)?

Solution: \(\{PR \rightarrow S, P \rightarrow T, PT \rightarrow R\} \)

(b) [2 points] Indicate all the candidate key(s) for \(r_1 \):

- \(\{P\} \)
- \(\{PR\} \)
- \(\{PRT\} \)
- \(\{PR\} \) and \(\{PT\} \)
- Other: __________

(c) [3 points] Is \(r_1 \) 3NF? ■ Yes □ No

(d) [3 points] Is \(r_1 \) BCNF? ■ Yes □ No

(e) [2 points] What is the projection of the FDs on \(r_2 \)?

Solution: \(\{QT \rightarrow V, V \rightarrow Q\} \)

(f) [2 points] Indicate all the candidate key(s) for \(r_2 \):

- \(\{Q\} \) and \(\{T\} \)
- \(\{QT\} \)
- \(\{TV\} \)

Question 4 continues...
- \{QT\} and \{TV\}
- \{QT\} and \{QV\}
- Other: ________________

(g) [3 points] Is \(r_2\) 3NF? ■ Yes □ No

(h) [3 points] Is \(r_2\) BCNF. □ Yes ■ No

(i) [2 points] What is the projection of the FDs on \(r_3\)?

Solution: \(\{S \rightarrow U, ST \rightarrow V, TV \rightarrow S\}\)

(j) [2 points] Is \(r_3\) 3NF? □ Yes ■ No

(k) [2 points] Is \(r_3\) BCNF? □ Yes ■ No

(l) [3 points] Decompose \(r_3\) to two relational schemas \(r_{3,1}\) and \(r_{3,2}\) so that they are in 3NF, and the decomposition is lossless and dependency preserving. Give those relational schemas.

Solution: \(\{S, U\}, \{S, T, V\}\)

(m) [1 point] Yes/No: is it possible to decompose \(r_3\) into two BCNF schemas \(r'_{3,1}\) and \(r'_{3,2}\), with a lossless and dependency-preserving decomposition?

■ Yes □ No

Solution: The earlier answer, SU and STV, are all in BCNF