Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 – DB Applications

Data Warehousing / Data Mining
(R&G, ch 25 and 26)
C. Faloutsos and A. Pavlo

Data mining - detailed outline

• Problem
• Getting the data: Data Warehouses, DataCubes, OLAP
• Supervised learning: decision trees
• Unsupervised learning
 – association rules

Problem

Given: multiple data sources
Find: patterns (classifiers, rules, clusters, outliers...)

NY

sales(p-id, c-id, date, $price)

customers(c-id, age, income, ...)

SF

PGH

Data Ware-housing

First step: collect the data, in a single place (= Data Warehouse)
How?
How often?
How about discrepancies / non-homegeneities?
Data Ware-housing

First step: collect the data, in a single place (= Data Warehouse)
How? A: Triggers/Materialized views
How often? A: [Art!]
How about discrepancies / non-homegeneities? A: Wrappers/Mediators

OLAP

Problem: “is it true that shirts in large sizes sell better in dark colors?”

<table>
<thead>
<tr>
<th>ci-d</th>
<th>p-id</th>
<th>Size</th>
<th>Color</th>
<th>sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td></td>
<td>L</td>
<td>Blue</td>
<td>30</td>
</tr>
<tr>
<td>C10</td>
<td></td>
<td>XL</td>
<td>Red</td>
<td>50</td>
</tr>
<tr>
<td>C20</td>
<td></td>
<td>XL</td>
<td>White</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C / S</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>size</th>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>Red</td>
</tr>
<tr>
<td>C10</td>
<td>Blue</td>
</tr>
<tr>
<td>C20</td>
<td>Gray</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C / S</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

DataCubes

‘color’, ‘size’: DIMENSIONS
‘count’: MEASURE
DataCubes

'color', 'size': DIMENSIONS
'count': MEASURE

Table:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>

Diagram:

- **Color:** Red, Blue, Gray
- **Size:** Small, Medium, Large

Legend:

- Red
- Blue
- Gray
DataCubes

SQL query to generate DataCube:
- Naively (and painfully):
 - select size, color, count(*)
 - from sales where p-id = 'shirt'
 - group by size, color

- select size, count(*)
 - from sales where p-id = 'shirt'
 - group by size

DataCube issues:
Q1: How to store them (and/or materialize portions on demand)
Q2: Which operations to allow
DataCubes

DataCube issues:
Q1: How to store them (and/or materialize portions on demand) A: ROLAP/MOLAP
Q2: Which operations to allow A: roll-up, drill down, slice, dice
[More details: book by Han+Kamber]

Q1: How to store a dataCube?

A1: Relational (R-OLAP)

<table>
<thead>
<tr>
<th>Color</th>
<th>Size</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>'all'</td>
<td>'all'</td>
<td>47</td>
</tr>
<tr>
<td>Blue</td>
<td>'all'</td>
<td>14</td>
</tr>
<tr>
<td>Blue</td>
<td>M</td>
<td>3</td>
</tr>
</tbody>
</table>

A2: Multi-dimensional (M-OLAP)

<table>
<thead>
<tr>
<th>Color</th>
<th>Size</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>S</td>
<td>20</td>
</tr>
<tr>
<td>Blue</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>Gray</td>
<td>S</td>
<td>0</td>
</tr>
</tbody>
</table>

A3: Hybrid (H-OLAP)

<table>
<thead>
<tr>
<th>Color</th>
<th>Size</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>S</td>
<td>20</td>
</tr>
<tr>
<td>Blue</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>Gray</td>
<td>S</td>
<td>0</td>
</tr>
</tbody>
</table>

...
DataCubes
Pros/Cons:
ROLAP strong points: (DSS, Metacube)

DataCubes
Pros/Cons:
ROLAP strong points: (DSS, Metacube)
• use existing RDBMS technology
• scale up better with dimensionality

DataCubes
Pros/Cons:
MOLAP strong points: (EssBase/hyperion.com)
• faster indexing
 (careful with: high-dimensionality; sparseness)

HOLAP: (MS SQL server OLAP services)
• detail data in ROLAP; summaries in MOLAP

Q1: How to store a dataCube
Q2: What operations should we support?
Q2: What operations should we support?

Roll-up

<table>
<thead>
<tr>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

Drill-down

<table>
<thead>
<tr>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>

Slice

<table>
<thead>
<tr>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td>47</td>
</tr>
</tbody>
</table>
Q2: What operations should we support?

- Dice

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>S</th>
<th>M</th>
<th>L</th>
<th>TOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Blue</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Gray</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>TOT</td>
<td>23</td>
<td>6</td>
<td>18</td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>

• Roll-up
• Drill-down
• Slice
• Dice
• (Pivot/rotate; drill-across; drill-through
• top N
• moving averages, etc)

D/W - OLAP - Conclusions

- D/W: copy (summarized) data + analyze
- OLAP - concepts:
 - DataCube
 - R/M/H-OLAP servers
 - ‘dimensions’; ‘measures’

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
 • Supervised learning: decision trees
 • Unsupervised learning
 – association rules
 – (clustering)
Decision trees - Problem

<table>
<thead>
<tr>
<th>Age</th>
<th>Chol-level</th>
<th>Gender</th>
<th>...</th>
<th>CLASS-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>150</td>
<td>M</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

??

Decision trees

• Pictorially, we have

num. attr#2 (eg., chol-level)

+ + -
+ - -
+ - -
+ - -

num. attr#1 (eg., 'age')

50

Decision trees

• and we want to label ‘?’

num. attr#2 (eg., chol-level)

? + + -
+ + -
+ + -
+ + -

num. attr#1 (eg., 'age')

40

Decision trees

• so we build a decision tree:

num. attr#2 (eg., chol-level)

? + + -
+ + -
+ + -
+ + -

num. attr#1 (eg., 'age')

50
Decision trees

• so we build a decision tree:

```
  +-----+      +-----+      +-----+
  | age<50|      | chol. <40|      | ... |
  +-----+      +-----+      +-----+
```

Outline

• Problem
• Getting the data: Data Warehouses, DataCubes, OLAP
• Supervised learning: decision trees
 – problem
 – approach
 – scalability enhancements
• Unsupervised learning
 – association rules
 – (clustering)

Decision trees

• Typically, two steps:
 – tree building
 – tree pruning (for over-training/over-fitting)

Tree building

• How?

```
  num. attr#1 (eg., ‘age’)
  +-----+      +-----+      +-----+      +-----+
  |   +   |      |   +   |      |   +   |      |   +   |
  | chol-level |      | chol-level |      | chol-level |      | chol-level |
```
Tree building:

- How?
- A: Partition, recursively - pseudocode:

 Partition (Dataset S)

 if all points in S have same label

 then return

 evaluate splits along each attribute A

 pick best split, to divide S into S1 and S2

 Partition(S1); Partition(S2)

Q1: how to introduce splits along attribute A_i

Q2: how to evaluate a split?

Q1: how to introduce splits along attribute A_i

A1:
- for num. attributes:
 - binary split, or
 - multiple split
- for categorical attributes:
 - compute all subsets (expensive!), or
 - use a greedy algo

Q2: how to evaluate a split?
Tree building

• Q1: how to introduce splits along attribute A_i
• Q2: how to evaluate a split?
• A: by how close to uniform each subset is — i.e., we need a measure of uniformity:

$$H(p^+, p^-)$$

Any other measure?

Optional

Tree building

entropy: $H(p^+, p^-)$

'gini' index: $1 - p^+_2 - p^-_2$

(Optional)

How about multiple labels?

(Optional)
Tree building

Intuition:
• entropy: #bits to encode the class label
• gini: classification error, if we randomly guess '+' with prob. p_+

Thus, we choose the split that reduces entropy/classification-error the most: Eg.:

Before split: we need
\[(n_+ + n_-) \cdot H(p_+), p_-) = (7+6) \cdot H(7/13, 6/13)\]
bits total, to encode all the class labels

After the split we need:
- 0 bits for the first half
- $(2+6) \cdot H(2/8, 6/8)$ bits for the second half

Tree pruning

• What for?
Tree pruning

Shortcut for scalability: DYNAMIC pruning:

• stop expanding the tree, if a node is ‘reasonably’ homogeneous
 – ad hoc threshold [Agrawal+, vldb92]
 – (Minimum Description Language (MDL) criterion (SLIQ) [Mehta+, edbt96])

Q: How to do it?

• A1: use a ‘training’ and a ‘testing’ set - prune nodes that improve classification in the ‘testing’ set. (Drawbacks?)
• (A2: or, rely on MDL (= Minimum Description Language))

Outline

• Problem
• Getting the data: Data Warehouses, DataCubes, OLAP
• Supervised learning: decision trees
 – problem
 – approach
 – scalability enhancements
• Unsupervised learning
 – association rules
 – (clustering)

Scalability enhancements

• Interval Classifier [Agrawal+,vldb92]: dynamic pruning
• SLIQ: dynamic pruning with MDL; vertical partitioning of the file (but label column has to fit in core)
• SPRINT: even more clever partitioning
Conclusions for classifiers

- Classification through trees
- Building phase - splitting policies
- Pruning phase (to avoid over-fitting)
- For scalability:
 - dynamic pruning
 - clever data partitioning

Outline

- Problem
- Getting the data: Data Warehouses, DataCubes, OLAP
- Supervised learning: decision trees
 - problem
 - approach
 - scalability enhancements
- Unsupervised learning
 - association rules
 - (clustering)

Association rules - idea

[Agrawal+SIGMOD93]

- Consider ‘market basket’ case:
 (milk, bread)
 (milk)
 (milk, chocolate)
 (milk, bread)
- Find ‘interesting things’, eg., rules of the form:
 milk, bread -> chocolate | 90%
Association rules - idea

Problem definition:

- given
 - a set of ‘market baskets’ (=binary matrix, of N rows/baskets and M columns/products)
 - min-support ‘s’ and
 - min-confidence ‘c’
- find
 - all the rules with higher support and confidence

Closely related concept: “large itemset”
I, I, ..., Im, lx
is a ‘large itemset’, if it appears more than ‘min-support’ times

Observation: once we have a ‘large itemset’, we can find out the qualifying rules easily (how?)
Thus, let’s focus on how to find ‘large itemsets’

Naive solution: scan database once; keep \(2^{|I|}\) counters

Drawback?
Improvement?

Eg., for \(|I|=3\) items only (A, B, C), we have
Association rules - idea

Anti-monotonicity property:
if an itemset fails to be 'large', so will every superset of it (hence all supersets can be pruned)

Sketch of the (famous!) ‘a-priori’ algorithm
Let $L(i-1)$ be the set of large itemsets with $i-1$ elements
Let $C(i)$ be the set of candidate itemsets (of size i)

Compute $L(1)$, by scanning the database.
repeat, for $i=2,3...$
\begin{itemize}
 \item \textbf{’join’} $L(i-1)$ with itself, to generate $C(i)$
 \item two itemset can be joined, if they agree on their first $i-2$ elements
 \item \textbf{prune} the itemsets of $C(i)$ (how?)
 \item scan the db, finding the counts of the $C(i)$ itemsets - set this to be $L(i)$
 \item unless $L(i)$ is empty, repeat the loop
\end{itemize}
Association rules - Conclusions

Association rules: a great tool to find patterns
• easy to understand its output
• fine-tuned algorithms exist

Outline
• Problem
• Getting the data: Data Warehouses, DataCubes, OLAP
• Supervised learning: decision trees
 – problem
 – approach
 – scalability enhancements
• Unsupervised learning
 – association rules
 – clustering

Clustering
• Problem:
 – given N points in V dimensions,
 – group them
Clustering

• Problem:
 – given N points in V dimensions,
 – group them

• MANY algorithms:
 – K-means, X-means, BIRCH, OPTICS

Clustering

Easiest to describe: k-means
- User gives # clusters ‘k’
- Start with ‘k’ random seeds
- Assign each point to its nearest seed
- Move seed towards center, and repeat

Overall Conclusions

• Data Mining = ´Big Data´ Analytics = Business Intelligence:
 – of high commercial, government and research interest
• DM = DB+ ML+ Stat+Sys

• Data warehousing / OLAP: to get the data
• Tree classifiers (SLIQ, SPRINT)
• Association Rules - ‘a-priori’ algorithm
• clustering: k-means (& BIRCH, CURE, OPTICS)

Reading material

Additional references

- Jiawei Han and Micheline Kamber, *Data Mining*, Morgan Kaufman, 2001, chapters 2.2-2.3, 6.1-6.2, 7.3.5