
Carnegie Mellon University
Department of Computer Science
15-415/615 - Database Applications
C. Faloutsos & A. Pavlo, Fall 2016

Prepared by Jiexi Lin
DUE DATES: Ph1: 11/9, Ph2: 11/28, both at 3:00 PM

Homework 7

IMPORTANT - what to hand in: For each of the two phases, please deliver all the
elements below (penalties for omissions).

• Phase 1: Due at 11/9, 3:00 PM:
– hard copy: All your documentation for Phase 1.
– Blackboard submission: a file [andrew id hw7 phase1].pdf with your documen-

tation.
• Phase 2: Due at 11/28, 3:00 PM

– hard copy: A printed version of your ./cmupaper/paper/functions.py , re-
memeber to include your name and andrew id in the header comment
of the source file.

– Blackboard submission: a tar file named[andrew id hw7 phase2].tar, with your
source file ./cmupaper/paper/functions.py , all your test scripts and a brief
ReadMe explaining how to use these test scripts.

Important for Phase 2: This url (http://15415.courses.cs.cmu.edu/fall2016/hws/
HW7/cmupaper_vm.tar) contains everything you need for Phase 2. See detailed instructions
on this webpage (http://15415.courses.cs.cmu.edu/fall2016/hws/HW7/index.html).

Reminders:
• Plagiarism: Homework may be discussed with other students, but all homework is to

be completed individually.
• Late Homeworks: The usual rules: (a) hard copy to Mrs. Marilyn Walgora, and

(b) email to all TAs, with the subject line 15-415 Homework Submission (HW 7)

Phase[phase#], and the count of slip-days used (and remaining).

For your information:
• Graded out of 100 points;
• 2 questions total
• 5-10 hours for phase 1; 10-20 hours for phase 2.

1

http://15415.courses.cs.cmu.edu/fall2016/hws/HW7/cmupaper_vm.tar
http://15415.courses.cs.cmu.edu/fall2016/hws/HW7/cmupaper_vm.tar
http://15415.courses.cs.cmu.edu/fall2016/hws/HW7/index.html

15-415/615 Homework 7, Page 2/10 Ph1: 11/9; Ph2: 11/28, 3:00 PM

Question Points Score

Deliverables - ph1 35

Deliverables - ph2 65

Total: 100

Homework 7 continues. . .

15-415/615 Homework 7, Page 3/10 Ph1: 11/9; Ph2: 11/28, 3:00 PM

1 Introduction

The goal is to design and implement CMUPaper, a very simple application that lets you
upload a paper, search papers with different criteria, vote for other one’s papers and see
some statistics.

Your work is divided into two phases. In the first phase you will come up with some
design concepts according to the application requirement.

The second phase consists of implementation and testing: You need to implement the
APIs defined by us and get your website running.

2 Requirements

2.1 Data requirements

The followinhs are entities that we need to record in the database. In Phase 1, it’s up to you
to decide how many tables we need to store the data. After Phase 1 is due, we will release
our version of schema and every one must use that to implement the project.

• User: Each user has a unique username (up to 50 characters) and a password (up to
32 characters). A user can upload zero or more papers and like zero or more papers.

• Papers: Each uploaded paper has a title (up to 50 characters), a timestamp it was
uploaded, 0 or more tags and the text content of this paper extracted from an uploaded
pdf file. Note that the text content can be arbitrally long. Tags should have only
alphabetic characters and should be less than 50 characters. Optionally a paper can
have a description (up to 500 characters). The system should also keep track of which
user uploaded the paper and which user likes the paper at what time. Papers may
have the same title and the same author. The system will need to identify a paper
with a unique id internally.

Example: The user “Jiexi” uploaded a new paper with the title “Scalability of Random
String Generators” and the description as “Random generators are a common component in
all kinds of benchmark tools. However simple they are, sometimes they can become a severe
scalability bottleneck.”. He also uploaded a pdf file named “jiexil.pdf” and then added three
tags “tag1”, “tag2”, “tag3” to the paper. This publication should be stored in the database
as described above.

Another user “Huanchen” logined to the website, searched with the keyword ”scalability”
and found the paper uploaded by ”Jiexi”. He downloaded and read the paper and liked it by
clicking the buttons on the webpage. As a result, the paper ”Scalability of Random String
Generators” becomes more popular and the system may recommend it to those users who
have tastes similar to Huanchen’s.

2.2 Functionality requirements

In CMUPaper we have users who upload papers, like papers uploaded by other users, read
papers, etc, as described below. For more implementation details please check comments in
the ./cmupaper/paper/functions.py . You will implement the following Tasks:

Homework 7 continues. . .

15-415/615 Homework 7, Page 4/10 Ph1: 11/9; Ph2: 11/28, 3:00 PM

T.1 Reset database: Keep the tables, but delete all their records.

T.2 Create user account (Register): We need the username of the user and the pass-
word. Prompt for a new username, if the proposed one is taken.

T.3 Login: Your system would ask for a username and password, and authenticate the
user or deny further access.

T.4 upload a paper with tags: Once authenticated, a use rcan post a paper. Note that
the creating a new paper and add tags should be atomic.

T.5 Delete a paper: Given a paper, delete it and any related information from the
database.

T.6 User timeline: After the user logs in, the main page would display the user’s timeline.
That is, your system should show the K most recent papers, with their ids, titles,
authors, descriptions, uploaded time, tags and numbers of likes. The results should
be sorted first by uploaded time (newest first) and then break ties by the paper’s id.
Treat K as a parameter.

T.7 Global timeline: Similar to the user timeline, we need to display the K most recent
papers’ information (id, title, authors, descriptions, uploaded time) uploaded in the
system.

T.8 Search for papers: For the input query, search for the papers that match a single
keyword query in either its title, description or content. The systen should return at
most K paper with the following infomation: id, title, authors, descriptions, uploaded
time. The results should be sorted first by uploaded time (newest first) and then break
ties by the paper’s id. Treat K as a parameter.

T.9 Search by a tag: Given a tag, search for the papers that has the tag. The systen
should return at most K paper with the following information: id, title, authors,
descriptions, uploaded time. The result should be ordered first by the paper’s uploaded
time (newest first) and then break ties by the paper’s id. Treat K as a parameter.

T.10 Get tags of a paper: Given an id of a paper, return all tha tags used in this paper.
Tags returned should be ordered by lexical ascending order.

T.11 Like/Unlike a paper: Your system should allow a user to like another paper uploaded
by other users once and only once. A user is not allowed to ”like” one’s own paper.
Once a user liked a paper they are allowed to unlike it. After that, they can thumbsup
for it again. Associated with each like, the system should record the timestamp that
the user made the like.

T.12 Count likes: Count the number of likes for a particular paper.

Homework 7 continues. . .

15-415/615 Homework 7, Page 5/10 Ph1: 11/9; Ph2: 11/28, 3:00 PM

Figure 1: Example of cohorts

T.13 List favourite papers of a user: List all the paper liked by a given user. The results
should be sorted first by the timestamp of the like (newest first) and then break
ties by the paper’s id.

T.14 List most popular papers: Generate a list of most popular paper uploaded after a
given timestamp T . The popularity of a paper is based on the total number of likes it
has received from when it’s uploaded. The systen should return at most K paper with
the following information: id, title, authors, descriptions, uploaded time. The results
should be sorted first by number of likes (most popular first) and then break ties
by the paper’s id. Treat K as a parameter.

T.15 Recommend papers based on likes: For a given user, your system should recom-
mend papers based on ”cohort”. For a given user U , the cohorts of U are users that
like the sampe paper liked by U . We recommend a paper to U if at leasts of U ′s cohort
likes the paper and at the same time this paper is not liked by U . The more cohorts
of U likes the paper, the higher ranks the paper gets. The systen should return at
most K paper with the following information: id, title, authors, descriptions, uploaded
time. The results should be sorted first by the number of likes from cohorts
(descending) and then break ties by the paper’s id.

Example: In Figure T.15. The system will first recommend Paper2 and then Paper3
to User1.

T.16 User statistics: For a given user, display the following counts, or print a warning if
the user does not exist.

(a) The number of papers uploaded by that user
(b) The number of likes made by that user
(c) The number of unique tags posted for that user’s papers

Example: If a user has uploaded 2 paper, each of them has only the tag ”CMU”.
We’d say that the number of unique tags used by this user is 1.

Homework 7 continues. . .

15-415/615 Homework 7, Page 6/10 Ph1: 11/9; Ph2: 11/28, 3:00 PM

T.17 Global statistics: The system should be able to generate statistics for all of the users
and papers.

(a) Most active K users: List of K users with the most papers uploaded as well as
their numbers of paper uploaded. Return a list of usernames sorted in descending
order of number of uploaded papers. Break ties by username in lexical ascending
order.

(b) Most popular tags: List of K tags sorted in descending order of popularity,
i.e. count of usage. Also include their occurencies in the result. Break ties by
tagname in lexical ascending order. tags that used most. Return a list of

(c) Most popular tag pairs: List of K tag pairs that appear together most fre-
quently as well as their occurencies. Return a list of tag pairs where tags has
lower lexical order comes first in the pair. The list should be sort first by the
frequency of co-occurence of the tag pair, and then break ties by lexical ascending
order (apply to first tag and then the second one).

In all the above cases, treat K as a parameter.

Homework 7 continues. . .

15-415/615 Homework 7, Page 7/10 Ph1: 11/9; Ph2: 11/28, 3:00 PM

Phase 1 - Deliverables - ph1 . [35pts]
No need to separate your answers

We have the following deliverables:

Specifically, for Phase 1, the point distribution is as follows:

(a) [3 points] The document forms, including the assumptions and design decisions
you made.

(b) [3 points] The ER diagram. Make sure you specify the cardinalities of the rela-
tionships, as in HW1.

(c) [6 points] The relational schema.

(d) [8 points] SQL DDL statements that create the above schema - make sure you
include all constraints (primary key, foreign key, etc)

(e) [15 points] SQL DML statements for tasks T.1-T.17.

Homework 7 continues. . .

15-415/615 Homework 7, Page 8/10 Ph1: 11/9; Ph2: 11/28, 3:00 PM

Phase 2 - Deliverables - ph2 . [65pts]
No need to separate your answers

The deliverables and point distribution of Phase 2 are as follows:

(a) [0 points] Checkout the instruction for phase to in the project webpage
(http://15415.courses.cs.cmu.edu/fall2016/hws/HW7/index.html).

(b) [0 points] Checkout the schema uploaded by us on the project web page (http://
15415.courses.cs.cmu.edu/fall2016/hws/HW7/index.html). In phase 2, you
are required to use the schema provided by us, otherwise the auto grader
can not grade your submission.

(c) [10 points] Listing of your testing efforts - for each task, please write down which
error cases you tested for (ie., non-existing user, illegal timestamp, etc)

(d) [50 points] The actual implementation: In the source code provided by us, we
have already implemented the web frontend for you. We also defined a set of APIs
in ./cmupaper/paper/functions.py . The web frontend will communicate to the
backend database via these APIs. Your job is to implement these APIs, fully test
them and make the website running. T.1-T.17.

Table 1 shows the breakdown of the points. For each tasks, half of the assigned
points go to the basic implementation (i.e. having a working implementation of the
task) and the second half goes to testing and error checking.

Task Points
T.1 Reset database 1
T.2 Create user account (Register) 1
T.3 Login 1
T.4 upload a paper with tags 3
T.5 Delete a paper 3
T.6 User timeline 3
T.7 Global timeline 3
T.8 Search for papers 3
T.9 Search by a tag 2
T.10 Get tags of a paper 1
T.11 Like/Unlike a paper 4
T.12 Count likes 1
T.13 List favourite papers of a user 3
T.14 List most popular papers 3
T.15 Recommend papers based on likes 6
T.16 User statistics 6
T.17 Global statistics 6

Table 1: Point breakdown

Question 2 continues. . .

http://15415.courses.cs.cmu.edu/fall2016/hws/HW7/index.html
http://15415.courses.cs.cmu.edu/fall2016/hws/HW7/index.html
http://15415.courses.cs.cmu.edu/fall2016/hws/HW7/index.html

15-415/615 Homework 7, Page 9/10 Ph1: 11/9; Ph2: 11/28, 3:00 PM

(e) [5 points] SQL injection: In short, make sure you strip-off all the “escape” char-
acters from your SQL strings. The reason is that, apart from the above func-
tions, you want to prevent unauthorized access to your system. More specifically,
you want to protect your SQL queries from an attack called SQL injection (see
http://en.wikipedia.org/wiki/SQL_injection). For instance, code oblivious
to SQL injection, may allow an intruder to log-in without a password. In python
it’s relatively easy to rule out SQL injection (see http://initd.org/psycopg/

docs/usage.html).

Question 2 continues. . .

http://en.wikipedia.org/wiki/SQL_injection
http://initd.org/psycopg/docs/usage.html
http://initd.org/psycopg/docs/usage.html

15-415/615 Homework 7, Page 10/10Ph1: 11/9; Ph2: 11/28, 3:00 PM

3 What to handin

3.1 Phase 1

• Hard copy: All your documentation for Phase 1.

• Blackboard submission: a file [andrew id hw7 phase1].pdf with your documenta-
tion.

Don’t forget to include your name and andrew ID in both the hard copy and the black-
board submission.

3.2 Phase 2

• Hard copy: A printed version of your ./cmupaper/paper/functions.py .

• Blackboard submission: a tar file named[andrew id hw7 phase2].tar, it should
contain the following things:

– ./functions.py – Your implementation of all the database APIs.

– ./customize checker.py – Your customized checker to test your implemen-
tation.

– ./ReadMe – A brief introduction on how to run your checker.

Don’t forget to include your name and andrew ID in both the hard copy and the black-
board submission. Rememeber to include your name and andrew id in the
header comment of the source file.

End of Homework 7

	Introduction
	Requirements
	Data requirements
	Functionality requirements

	What to handin
	Phase 1
	Phase 2

