IMPORTANT

- **Deposit hard copy** of your answers in **class at 3:00pm on Nov. 2/2016.**
- Separate answers, as usually, i.e., please solve each of the 5 questions on a separate page, and type the usual, full information, on each page: your **name, Andrew ID, course #, Homework #, and Question #.**

Reminders

- **Plagiarism:** Homework may be discussed with other students, but all homework is to be completed **individually.**
- **Typeset** all your answers.
- **Late homeworks:** Follow usual policy: email late homeworks
 - to all TAs
 - with the subject line exactly **15-415 Homework Submission (HW 6)**
 - and the count of slip-days you are using.

For your information:

- Graded out of **100 points; 5 questions total**
- Rough time estimate: \(\approx 2-5\) hours (0.5-1 hours for each question)

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Optimization</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Functional Dependencies I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Functional Dependencies II</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Decompositions</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Normal Forms</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Revision: 2016/11/11 18:23
Question 1: Query Optimization [20 points]
GRADED BY: Huanchen Zhang

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: __________________; andrew-id: __________________; late days:

For this problem we consider a modified and simplified version of the bike sharing database from Homework 2. The bike sharing database has the following three tables:

1. Bike(bid, model, year), where the primary key is bid;
2. Station(sid, name, city, zip_code), where the primary key is sid;
3. Trip(tid, date, start_sid, end_sid, bid), where the primary key is tid, where start_sid and end_sid are foreign keys to Station, and where bid is a foreign key to Bike.

For these tables we are given the following statistics:

- **Bike** consists of \(N_1 = 50,000 \) tuples, and there are:
 - \(V(Bike, model) = 4000 \) distinct bike models.
 - \(V(Bike, year) = 20 \) distinct years, 1997-2016 inclusive.
- **Station** consists of \(N_2 = 24,000 \) tuples, and there are:
 - \(V(Station, name) = 4000 \) distinct station names.
 - \(V(Station, city) = 600 \) distinct cities.
 - \(V(Station, zip_code) = 50 \) distinct station zip codes.
- **Trip** consists of \(N_3 = 2,000,000 \) tuples, and there are:
 - \(V(Trip, start_sid) = 24,000 \) distinct start_sid's.
 - \(V(Trip, end_sid) = 24,000 \) distinct end_sid's.
 - \(V(Trip, bid) = 15,000 \) distinct bid's.
 - \(V(Trip, date) \): not needed - not given.

For the queries below, assume that there are no correlations between the columns of a table nor any prior knowledge about the data (i.e., assume uniform distribution). Estimate the number of resulting tuples for the query, and give the answer with *** fourth *** significant digit accuracy. E.g., if the answer is 1,234,567, you may round it to 1,234,000. We will accept either rounding half up or down.

(a) [3 points] SELECT * FROM Bike WHERE year > 2004 AND year <= 2009;

(a) 12500.0

Solution: \(N_1 \cdot 0.25 \)

Grading info: -3 for any incorrect answer

(b) [2 points] SELECT * FROM Bike WHERE model = ‘Super Bike’;

(b) 12.5
Solution: $N_1/V(Bike, \text{model})$

Grading info: -2 for any incorrect answer

(c) [3 points] SELECT * FROM Station WHERE city = 'Pittsburgh' AND name = 'Carnegie Mellon University';

(c) 0.01

Solution: $N_2/V(\text{Station, city})/V(\text{Station, name})$

Grading info: -1.5 for off-by-factor-of-10 error, -3 for any other incorrect answer

(d) [3 points] SELECT zip_code, count(*) FROM Station GROUP BY zip_code;

(d) 50.0

Solution: V(Station, zipcode)

Grading info: -3 for any incorrect answer

(e) [4 points] SELECT * FROM Trip JOIN Bike ON Trip.bid = Bike.bid WHERE year > 2014;

(e) 200,000.0

Solution: $N_3 \cdot 0.1$

Grading info: -4 for any other incorrect answer

(f) [5 points] SELECT Station.city, count(*) FROM Trip JOIN Station ON Station.sid = Trip.start_sid GROUP BY Station.city;

(f) 600.0

Solution: V(Station, city)

Grading info: -2 for off-by-factor-of-10 error, -5 for any incorrect answer

Homework 6 continues...
Question 2: Functional Dependencies I [10 points]
GRADED BY: Jiexi Lin

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: _______________________; andrew-id: _______________________; late days:

Consider the following legal instance of a relational schema S with attributes ABC:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>20</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>20</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>30</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Legal instance of schema S for question 2.1

(a) Which of the following dependencies are violated by the instances of S in Table 1?

i. [1 point] ■ Yes □ No : $A \rightarrow B$ is violated.
 ii. [2 points] ■ Yes □ No : $B \rightarrow A$ is violated.
 iii. [2 points] ■ Yes □ No : $C \rightarrow A$ is violated.
 iv. [2 points] ■ Yes □ No : $AC \rightarrow B$ is violated.
 v. [2 points] □ Yes ■ No : $BC \rightarrow A$ is violated.

(b) [1 point] By only observing the instance of S in Table 1 can you identify the functional dependencies that hold on schema S?
 □ Yes ■ No

Solution: No, because we can only see an instance.
Question 3: Functional Dependencies II [20 points]
GRADED BY: Prashanth Menon

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: ___________; andrew-id: ___________; late days:

For the next set of questions consider the relational schema \(R = \{P, Q, R, S, T, U, V, W\} \) and the set of functional dependencies FD:

\[
\begin{align*}
W & \rightarrow U \\
RU & \rightarrow VW \\
PQ & \rightarrow ST \\
P & \rightarrow R \\
SV & \rightarrow WU \\
R & \rightarrow S
\end{align*}
\]

(a) [6 points] Which of the following is a minimum cover of the FD? Mark all that qualify; if none, mark accordingly, and give your own answer.

i. The given FDs (Eq 1-6), is a minimum cover already.
ii. \{\(W \rightarrow U, RU \rightarrow V, PQ \rightarrow T, P \rightarrow R, SV \rightarrow W, R \rightarrow S \)\}
iii. \{\(W \rightarrow U, RU \rightarrow V, PQ \rightarrow S, PQ \rightarrow T, P \rightarrow R, SV \rightarrow U, R \rightarrow S \)\}
iv. \{\(W \rightarrow U, RU \rightarrow V, RU \rightarrow W, PQ \rightarrow S, P \rightarrow R, SV \rightarrow W, R \rightarrow S \)\}

v. none of the above - the cover is ..

Solution: ii

(b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(6))?

i. [3 points] ■ Yes □ No : \(PV \rightarrow W \)
ii. [3 points] □ Yes ■ No : \(R \rightarrow T \)
iii. [3 points] ■ Yes □ No : \(P \rightarrow S \)
iv. [3 points] □ Yes ■ No : \(PQR \rightarrow U \)

(c) [1 point] True or False: The attribute closure \(\{P\}^+ \) is \(\{R\} \).

□ True ■ False

Grading info: It is \(\{P, R, S\} \).

(d) [1 point] True or False: The attribute closure \(\{PQ\}^+ \) is \(\{P, Q, R, S, T\} \).

■ True □ False

Homework 6 continues...
Question 4: Decompositions [20 points]
GRADED BY: Jiexi Lin

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: ___________________; andrew-id: ___________________; late days:

For this set of questions, consider the relation with attributes, \(X = \{ A, B, C, D, E, F \} \),
Let the following functional dependencies \(FD \) be defined over the relation \(X \):

\[
\begin{align*}
A & \rightarrow C \\
BC & \rightarrow D \\
F & \rightarrow E
\end{align*}
\]

(a) [2 points] Provide the attribute closure of \(\{ AB \} \).

Solution: \(\{ AB \}^+ = \{ ABCD \} \)

(b) Consider the decomposition \(ABC, CDEF \). Mark 'True' or 'False':
 i. [3 points] □ True ■ False : It is lossless
 ii. [3 points] □ True ■ False : It is dependency-preserving

(c) Consider the decomposition \(ABCD, ABDF, EF \). Mark 'True' or 'False':
 i. [3 points] ■ True □ False : It is lossless
 ii. [3 points] ■ True □ False : It is dependency-preserving

(d) Consider the decomposition \(ABCDF, EF \). Mark 'True' or 'False':
 i. [3 points] ■ True □ False : It is lossless
 ii. [3 points] ■ True □ False : It is dependency-preserving

Homework 6 continues...
Question 5: Normal Forms [30 points]

GRADED BY: Lu Zhang

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: ____________________; andrew-id: ____________________; late days: ____________

Consider the relation with attributes, \(E = \{W,X,Y,Z\} \). Suppose that the following functional dependencies hold:

\[
\begin{align*}
XY & \rightarrow W \quad (7) \\
X & \rightarrow Z \quad (8) \\
W & \rightarrow X \quad (9)
\end{align*}
\]

(a) [6 points] List all the candidate key(s) for \(E \). A, possibly correct, answer may be: “\(\{WX\} \) and \(\{YZ\} \)”.

Solution: \(\{WY\} , \{XY\} \)

Grading info: -3: for each missing candidate key

(b) [1 point] Is the relation \(E \) in BCNF? □ Yes ■ No

c) From the list below, select all applicable choices to justify whether \(E \) is (or is not) in BCNF.

Note: when we refer to the main requirement for BCNF, we mean: every determinant is a super key.

i. [1 point] □ True ■ False : All FD’s satisfy the main requirement.
ii. [1 point] □ True ■ False : FD (7) violates the main requirement.
iii. [1 point] ■ True □ False : FD (8) violates the main requirement.
iv. [1 point] ■ True □ False : FD (9) violates the main requirement.

(d) [1 point] Is the relation \(E \) in 3NF? □ Yes ■ No

e) From the list below, select all applicable choices to justify whether \(E \) is (or is not) in 3NF.

Note: when we refer to the secondary requirement for 3NF, we mean: for every FD \(X \rightarrow A \), \(A \) is part of a candidate key.

i. [1 point] □ True ■ False : All FD’s satisfy the secondary requirement.
ii. [1 point] □ True ■ False : FD (7) violates the secondary requirement.
iii. [1 point] ■ True □ False : FD (8) violates the secondary requirement.
iv. [1 point] ■ True □ False : FD (9) violates the secondary requirement.

(f) [6 points] Give a 3NF decomposition of \(E \) that is lossless, dependency preserving, and has as few tables as possible.

Question 5 continues...
Solution: $E_{1,1}=(X, Z), E_{1,2}=(W, X, Y)$.

Grading info: -3: 3NF decomposition more than with 2 tables; -4: 3NF decomposition with more than 5 tables

(g) [8 points] Give a BCNF decomposition of E that is lossless, and has as few tables as possible.

Solution: $E_{1,1}=(W, X), E_{1,2}=(W, Y), E_{1,3}=(X, Z)$

Grading info: -5: BCNF decomposition with more than 3 tables

End of Homework 6