
Carnegie Mellon University
Department of Computer Science
15-415/615 - Database Applications
C. Faloutsos & A. Pavlo, Fall 2016

Homework 3 (by Huanchen Zhang)
Due: hard and e-copy at 3:00pm, on Wednesday, Oct. 5

VERY IMPORTANT: Deposit hard copy of your answers and a hard copy of any
new or modified code, and also submit a tar-file ([andrew-id]-HW3.tar.gz) of your code
on Blackboard. For ease of grading, please

1. Type the full info on each page: your name, Andrew ID, course#, Homework#,
Question# on each page.

2. Check that running make compiles the code and passes all the tests.

Reminders:
• Platform: We will run and grade your program on the andrew linux machines.
• Plagiarism: Homework is to be completed individually.
• Typeset all of your answers.
• Late homeworks: in that case, please email it

– to all TAs
– with the subject line exactly 15-415 Homework Submission (HW 3)

– and the count of slip-days you are using.
For your information:
• Graded out of 100 points; 2 questions total
• Rough time estimate: approx. 20 hours - be sure to start early
Revision : 2016/10/03 14:08

Question Points Score

Fun with Orders 20

Count My Range 80

Total: 100

1

15-415/615 Homework 3 , Page 2 of 9 DUE: Oct. 5, 3:00pm

1 Preliminaries - Our B+ Tree Implementation

The goal of this assignment is to make you more familiar with the B+ Tree data structure.
Specifically, you are given a basic B+ Tree implementation and you are asked to extend it
by implementing some new operations/functions.

1.1 Where to Find Makefiles, Code, etc.

The file is at http://15415.courses.cs.cmu.edu/fall2016/hws/HW3/btree.tar.gz

Quick-start guide:
• tar xvfz btree.tar.gz; make

to see a small demo. Moreover:
1. make extract # extracts input data files into appropriate directory
2. make load # like extract, and also compiles everything and loads the data files
3. ./main # to try out the program - e.g. S christos

4. make # like load, but it also runs tests - only the first test succeeds, on purpose
5. make test search # the first test - should always work
6. make spotless # resets to original - deletes all derived files

Explanations
• make load inserts the entire collection of documents (actually, a dictionary, split into

thousands of files). Then, you can search for the key, say “alex”, and see the contents
of the documents containing the search key.
• make runs some tests against the code, and compares (diff) the output against the

correct output. When your code is implemented correctly, then make should report all
tests as successful.
• make test search runs a simple search test, which should pass out-of-the-box.
• make test sanity runs some very simple tests on the new functionalities to be imple-

mented, which should fail out-of-the-box. Before submitting your code, make sure
it passes these tests.

1.2 Description of the provided B+ tree package

The specifications of the provided implementation are:
1. It creates an “inverted index” in alphabetical order in the form of a B+ tree over a

given corpus of text documents.
2. It supports the operations that are not marked unimplemented in Table 1.
3. No duplicate keys are allowed in the tree. FYI: It uses a variation of “Alternative 3”

and stores a postings list for each word that appears many times.
4. It does not support deletions.
5. The tree is stored on disk, since it is persistent.

The directory structure and contents are as follows:

Homework 3 continues. . .

http://15415.courses.cs.cmu.edu/fall2016/hws/HW3/btree.tar.gz

15-415/615 Homework 3 , Page 3 of 9 DUE: Oct. 5, 3:00pm

• DOC: contains useful documentation of the code.
• SRC: the source code.
• Datafiles: data documents, to insert to the tree.
• Tests: some sample tests and their solutions.
• Some other useful files, e.g., README, makefile etc.
• IMPORTANT: Make sure you do not delete the files B-TREE FILE, POSTINGSFILE,

TEXTFILE, parms - they are created by the B+ tree implementation, they should be in
the same directory as ./main, and they are necessary to make the B+ tree persistent.

The main program file is called “main.c”. It waits for the user to enter commands and
responds to them as shown in Table 1.

ARGUMENT EFFECT
C sCan and prints all the keys that are present in the tree, in ascending lexi-

cographical order.
i arg The program parses the text in arg which is a text file, and inserts the

uncommon words (i.e., words not present in “comwords.h”) into the B+
tree. More specifically, the uncommon words of arg make the “keys” of the
B+ tree, and the value for all these keys is set to arg. Since this tree enables
us to find which words are present in which documents, it is known as the
inverted index.

o arg (For Question 1) Inserts the uncommon words in the text file (specified by
arg) into the B+ tree. Unlike “i arg”, the keys are inserted in the same order
as they appear in the text file.

p arg Prints the keys in a particular page of the B+ tree where arg is the page
number. It also prints some statistics about the page such as the number of
bytes occcupied, the number of keys in the page, etc.

s key searches the tree for key (which is a single word). If the key is found, the
program prints “Found the key!”. If not, it prints “Key not found!”.

S key Searches the tree for key. If the key is found, the program prints the docu-
ments in which the key is present, also known as the posting list of key. If
not, it prints “Key not found!”.

T PreTty-prints the tree.
Prints and resets B+ tree statistics. For this assignment, only “number of

reads (B+ tree page accesses)” is printed and reset.
n Count the number of pages in the B+ tree.
x Exit

Table 1: Existing B+ Tree command interface

Homework 3 continues. . .

15-415/615 Homework 3 , Page 4 of 9 DUE: Oct. 5, 3:00pm

2 Your tasks

Your task is to implement the commands listed in Table 2. The detailed behavior and
implementation hints of the commands are embedded in the following questions.

ARGUMENT EFFECT
c pageNum (Question 2(a)) counts the number of keys in the subtree rooted at page

pageNum.
r leftkey rightkey (Question 2(b)) Counts the number of keys in the range [leftkey,

rightkey] (boundaries are inclusive).

Table 2: B+ Tree commands to be implemented

Homework 3 continues. . .

15-415/615 Homework 3 , Page 5 of 9 DUE: Oct. 5, 3:00pm

Question 1: Fun with Orders . [20 points]
Note#1: For this question, you do NOT need to modify the B+ tree code we give you.
You only need to report the required counts and to re-arrange the insertion order.

Note#2: Here, we are NOT doing the bulk-loading algorithms in the textbook or the
foils - we are inserting one-word-at-a-time.

Let’s warm up with a simple question. Suppose you want to insert the words in a big
text file into an empty B+ tree, one at a time. How important is the insertion order (in
terms of the space-efficiency of the resulting B+ tree)?

Lets find out! Please follow the steps below:

1. Set page size: Change the first line in
• vim SRC/parms

to 1024 (from the default = 128).
2. make extract # Extract the data files
3. python gen textfile.py

This will generate two big text files (bulkload random, bulkload sort), with all
the words in Datafiles in random order, and sorted order, respectively.

4. cd SRC; make # Compile the source code
5. ./main # Run the main program - you should be in ./SRC

6. # Load text file “bulkload random”:
o

../bulkload random

7. # Count the number of pages in the B+ tree:
n

8. # Exit; Clear and recompile the source code:
x

make spotless

make

9. Repeat step 5-7 for “bulkload sort”.

Then, please answer the following questions:

(a) [5 points] How many pages does the B+ tree have when the words are inserted
in random order?

(b) [5 points] How many pages does the B+ tree have if the words are inserted in
alphabetical order?

(c) [10 points] Can you do better than random? Try the following “delayed-third”
heuristic: insert the words in sorted order, but omitting every third word; then
insert the left-overs in random order.

More formally, suppose the text file has 3N words. Let W be the word set. Let w[i]
denote the ith word in W in alphabetical order (1 ≤ i ≤ 3N). Divide W into two
subsets: S = {w[3i+1], w[3i+2], where 0 ≤ i ≤ N−1} and R = {w[3i], where 1 ≤
i ≤ N}. First, insert the words in set S in alphabetical order. Then insert the
words in set R in random order.

Question 1 continues. . .

christos
Typewritten Text
insert with 'o',from one big file

15-415/615 Homework 3 , Page 6 of 9 DUE: Oct. 5, 3:00pm

Report the number of pages in the B+ tree, under the above delayed-third heuristic.

(d) [0 points] [optional but encouraged] Can you do even better than the delayed-
third heuristic? If yes, provide a script (you may use the provided python script as
a starting point) that generates your input file “bulkload my” (of course, your text
file must have the same words as in “bulkload random” and “bulkload sort”) and

• report the number of pages of the resulting B+ tree,
• and explain your idea and your results in a few sentences.

We will announce in class the names of all people whose solution beats the “delayed-
third” heuristic!

Homework 3 continues. . .

15-415/615 Homework 3 , Page 7 of 9 DUE: Oct. 5, 3:00pm

Question 2: Count My Range . [80 points]
IMPORTANT: Before attempting this question, please switch the B+ tree page size
back to 128 (i.e., change the first number in SRC/parms to 128).

Note: For questions asking for the number of pages read during the query, there is no
single correct answer. A range of numbers will be accepted for grading.

Suppose you are asked the following query for your B+ tree: how many keys are included
in the range between “christos” and “huanchen” (inclusive)?

Naive / Bad solution: A näıve way to answer this query is to find the boundary
leaf nodes that contain “christos” and “huanchen”, and then traverse the leaf nodes
between them and count the keys. This solution, however, requires a large number of
disk accesses, especially when the subtree is wide, and is thus very slow.

Good solution: We modified the B+ tree page header to include in each page a “Sub-
treeKeyCount” field (see SRC/def.h) that will hold the number of keys included in the
subtree of the page (i.e., the page is the subtree root). Note that we only modified the
page header struct in def.h (and a few other files such as FetchPage.c, Flushpage.c,
fillIn.c, PrintTree.c, to make the code compile). The actual implementation of
updating the “SubtreeKeyCount” field, is left for you to do.

(a) Your first task is to implement the operations on the “SubtreeKeyCount” field.
Your code must update the “SubtreeKeyCount” fields dynamically. For example,
after each key insertion, the “SubtreeKeyCount” fields in the related pages must
be updated. Your code must be efficient (i.e., you cannot recompute the “Sub-
treeKeyCount” for every page in a brute-force way upon insertion). Be sure to
implement subtreeKeyCount.c so that the c arg command in the main program is
implemented. Also, please add the usual comments in your code.

Hint: You may implement the “näıve” way (describe above) first and then verify
your “SubtreeKeyCount” implementation against the “näıve” count.

Based on your “SubtreeKeyCount” implementation, please answer the following
questions:

i. [0 points] Reset the B+ tree page size to 128 (i.e., change the first number
in SRC/parms to 128).

ii. [3 points] Load all the files in Datafiles directory EXCEPT dict000000 to
your B+ tree. What is the “SubtreeKeyCount” for page #1 (i.e., c 1)? How
many pages are read during the query?

iii. [3 points] What is the “SubtreeKeyCount” for page #35643 (i.e., c 35643)?
How many pages are read during the query?

iv. [3 points] What is the “SubtreeKeyCount” for page #2016 (i.e., c 2016)?
How many pages are read during the query?

v. [5 points] Now insert Datafiles/dict000000 into your B+ tree (i.e.,
i Datafiles/dict000000). How many pages are read during the query?

vi. [2 points] What is the “SubtreeKeyCount” for page #1 now?

vii. [2 points] What is the “SubtreeKeyCount” for page #35643 now?

Question 2 continues. . .

christos
Typewritten Text
insert with 'i'

christos
Typewritten Text
insert with 'i'

15-415/615 Homework 3 , Page 8 of 9 DUE: Oct. 5, 3:00pm

viii. [20 points] We will test your code using our “private” test cases, which we
will publish after the due date. Make sure your code compiles and is well-tested.

(b) You are now ready to implement an efficient “range key count” query (the r

leftkey rightkey command in Table 2)! Note that:

• both the left and the right boundaries are inclusive
• the boundary keys may not exist in the B+ tree. For example, for query “r

huanchen huanchen”, if “huanchen” exists in the B+ tree, the query returns 1;
otherwise, the query returns 0.
• the range boundaries may be flipped (e.g., r zoo aaron) - then the query

returns 0.

You could/should use your “SubtreeKeyCount” implementation in part (a) for an
efficient algorithm.

Based on your “range key count” implementation, load all the files in Datafiles

directory to your B+ tree (i.e., make load) and answer the following questions:

i. [4 points] Run command r huanchen zhang. How many keys fall in the
range [huanchen, zhang]? How many pages are read during the query?

ii. [4 points] Run command r andy pavlo. How many keys fall in the range
[andy, pavlo]? How many pages are read during the query?

iii. [4 points] Run command r tequila vodka. How many keys fall in the range
[tequila, vodka]? How many pages are read during the query?

iv. [30 points] Again, we will test your code using our “private” test cases, which
we will publish after the due date. Make sure your code compiles and is well-
tested.

Question 2 continues. . .

15-415/615 Homework 3 , Page 9 of 9 DUE: Oct. 5, 3:00pm

3 Testing and Grading

We will test your submission for correctness using scripts, and also look through your code.

Correctness. As we said earlier, an easy, minimal check would be using make test sanity.
Your code should pass this. However, please make sure you test your code on additional
settings, of your own. Consider corner cases (empty tree, invalid inputs, non-existent
words, etc.). As mentioned, we will use several, additional, “private” test cases to
grade your code.

Output Format. If make test sanity is successful, you have the right output format.

Code. We will check the functions that you created/modified.

4 What to hand-in

As we said in the front page, we want both a hard copy of the changed functions; and a
tar-file with everything we need to run our tests.

1. Hard copy: in class, please submit
(a) your answers to the questions listed, and
(b) all the changes that you made to the source code - this should be ≈10 files (*.c,

*.h, *.py etc).
Please hand-in only the functions that you added/changed.

2. Online:
• Create [your-andrew-id]-HW3.tar.gz, a (compressed) tar file of your complete

source code including only and all the necessary files, as well as the makefile

(i.e., exclude *.o *.out etc files);
• Submit your tar file via blackboard, under Assignments/Homework 3.

For your convenience, make handin automates the collection of deliverables. However, it is
your responsibility to make sure everything is included properly.

End of Homework 3

	Preliminaries - Our B+ Tree Implementation
	Where to Find Makefiles, Code, etc.
	Description of the provided B+ tree package

	Your tasks
	Testing and Grading
	What to hand-in

