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Today’s Class 

• Storage Models 
• System Architectures 
• Vectorization 
• Compression 
• Distributed Execution 
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Wikipedia Example 
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CREATE TABLE pages ( 
  pageID INT PRIMARY KEY, 
  title VARCHAR UNIQUE, 
  latest INT REFERENCES revisions (revID), 
); 

CREATE TABLE revisions ( 
  revID INT PRIMARY KEY, 
  pageID INT REFERENCES pages (pageID), 
  userID INT REFERENCES useracct (userID), 
  content TEXT, 
  updated DATETIME 
); 

CREATE TABLE useracct ( 
  userID INT PRIMARY KEY, 
  userName VARCHAR UNIQUE, 
  ⋮ 
); 
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OLTP 

• On-line Transaction Processing: 
– Short-lived txns. 
– Small footprint. 
– Repetitive operations. 
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UPDATE useracct 
   SET lastLogin = NOW(), 
       hostname = ? 
 WHERE userID = ? 

INSERT INTO revisions 
VALUES (?,?…,?) 

SELECT * FROM useracct 
 WHERE userName = ? 
   AND userPass = ? 

SELECT P.*, R.*  
  FROM pages AS P 
 INNER JOIN revisions AS R 
    ON P.latest = R.revID 
 WHERE P.pageID = ? 



CMU SCS 

OLAP 

• On-line Analytical Processing: 
– Long running queries. 
– Complex joins. 
– Exploratory queries. 
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SELECT COUNT(U.lastLogin), 
       EXTRACT(month FROM U.lastLogin) AS month 
  FROM useracct AS U 
 WHERE U.hostname LIKE ‘%.gov’ 
 GROUP BY EXTRACT(month FROM U.lastLogin) 
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Data Storage Models 

• There are different ways to store tuples. 
• We have been assuming the n-ary storage 

model this entire semester. 
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n-ary Storage Model 

• The DBMS stores all attributes for a single 
tuple contiguously in a block. 
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userID userName userPass lastLogin hostname 

userID userName userPass lastLogin hostname 

userID userName userPass lastLogin hostname 

- - - - - 

NSM Disk Page 
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n-ary Storage Model 
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userID userName userPass lastLogin hostname 

userID userName userPass lastLogin hostname 

userID userName userPass lastLogin hostname 

- - - - - 

NSM Disk Page 

SELECT * FROM useracct 
 WHERE userName = ? 
   AND userPass = ? 

B+Tree 

userID userName userPass lastLogin hostname 

INSERT INTO useracct 
VALUES (?,?,…?) 
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n-ary Storage Model 
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userID userName userPass lastLogin hostname 

userID userName userPass lastLogin hostname 

userID userName userPass lastLogin hostname 

userID userName userPass lastLogin hostname 

NSM Disk Page 

SELECT COUNT(U.lastLogin), 
       EXTRACT(month FROM U.lastLogin) AS month 
  FROM useracct AS U 
 WHERE U.hostname LIKE ‘%.gov’ 
 GROUP BY EXTRACT(month FROM U.lastLogin) 

X 
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n-ary Storage Model 

• Advantages 
– Fast inserts, updates, and deletes. 
– Good for queries that need the entire tuple. 

• Disadvantages 
– Not good for scanning large portions of the 

table and/or a subset of the attributes. 
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Decomposition Storage Model 

• The DBMS stores a single attribute for all 
tuples contiguously in a block. 
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DSM Disk Page 

hostname hostname hostname hostname hostname 

hostname hostname hostname hostname hostname 

hostname hostname hostname hostname hostname 

hostname hostname hostname hostname hostname 

userID 

userName 
userPass 

lastLogin 
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Decomposition Storage Model 
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DSM Disk Page 

hostname hostname hostname hostname hostname 

hostname hostname hostname hostname hostname 

hostname hostname hostname hostname hostname 

hostname hostname hostname hostname hostname 

SELECT COUNT(U.lastLogin), 
       EXTRACT(month FROM U.lastLogin) AS month 
  FROM useracct AS U 
 WHERE U.hostname LIKE ‘%.gov’ 
 GROUP BY EXTRACT(month FROM U.lastLogin) 
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Decomposition Storage Model 

• Advantages 
– Reduces the amount wasted I/O because the 

DBMS only reads the data that it needs. 
– Better compression (more on this later). 

• Disadvantages 
– Slow for point queries, inserts, updates, and 

deletes because of tuple splitting/stitching. 
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History 

• 1970s: Cantor DBMS 
• 1980s: DSM Proposal 
• 1990s: SybaseIQ (in-memory only) 
• 2000s: Vertica, Vectorwise, MonetDB 
• 2010s: Cloudera Impala, Amazon Redshift, 

           “The Big Three” 
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System Architectures 

• Fractured Mirrors 
• Partition Attributes Across (PAX) 
• Pure Columnar Storage 
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Fractured Mirrors 

• Store a second copy of the database in a 
DSM layout that is automatically updated. 
– Examples: Oracle, IBM DB2 BLU 
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NSM DSM 
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PAX 

• Data is still stored in NSM blocks, but each 
block is organized as mini columns. 
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PAX Disk Page 

hostname lastLogin lastLogin lastLogin lastLogin 

userPass userPass hostname hostname hostname 

userName userName userName userPass userPass 

userID userID userID userID userName 
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Column Stores 

• Entire system is designed for columnar data. 
– Query Processing, Storage, Operator 

Algorithms, Indexing, etc. 
– Examples: Vertica, VectorWise, Paraccel, 

Cloudera Impala, Amazon Redshift 
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Virtual IDs vs. Offsets 

• Need a way to stitch tuples back together. 
• Two approaches: 

– Fixed length offsets 
– Virtual ids embedded in columns 

20 
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Offsets Virtual Ids 
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Modifying a Column Store 

• INSERT: 
– Split tuple into attributes, append to columns. 

• DELETE: 
– Mark the tuple as deleted in a separate bit-

vector. Check visibility at runtime. 
• UPDATE: 

– Implement as DELETE+INSERT 
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Bifurcated Architecture 

• All txns are executed on OLTP database. 
• Periodically migrate changes to OLAP database. 
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OLAP 
Data Warehouse 

OLTP 

OLTP 

OLTP 
Extract 

Transform 
Load 
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Today’s Class 

• Storage Models 
• System Architectures 
• Vectorization 
• Compression 
• Distributed Execution 
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Query Processing Strategies 

• The DBMS needs to process queries 
differently when using columnar data. 

• We have already discussed the Iterator 
Model for processing tuples in the DBMS 
query operators. 
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Materialization Model 

• Each operator consumes its entire input and 
generates the full output all at once. 
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SELECT cname, amt 
  FROM customer, account 
 WHERE customer.acctno = 
       account.acctno 
   AND account.amt > 1000 

CUSTOMER ACCOUNT 

σ 
⨝ 
π 

acctno=acctno 

amt>1000 

cname, amt 
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Iterator Model 

• Each operator calls next() on their child 
operator to process tuples one at a time. 
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SELECT cname, amt 
  FROM customer, account 
 WHERE customer.acctno = 
       account.acctno 
   AND account.amt > 1000 

CUSTOMER ACCOUNT 

σ 
⨝ 
π 

acctno=acctno 

amt>1000 

cname, amt 

next 

next 

next 
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Observations 

• The Materialization Model is a bad because 
the intermediate results may be larger than 
the amount of memory in the system. 

• The Iterator Model is bad with a DSM 
because it requires the DBMS to stitch 
tuples back together each time. 
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Vectorized Model 

• Like the Iterator Model but each next() 
invocation returns a vector of tuples instead 
of a single tuple. 

• This vector does not have to contain the 
entire tuple, just the attributes that are 
needed for query processing. 
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Vectorized Model 

• Each operator calls next() on their child 
operator to process vectors. 
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SELECT cname, amt 
  FROM customer, account 
 WHERE customer.acctno = 
       account.acctno 
   AND account.amt > 1000 

CUSTOMER ACCOUNT 

σ 

⨝ 
Μ 

acctno=acctno 

amt>1000 

cname, amt 

acctno 

amt 

Μ acctno, amt 

next 

next 

next 

next 
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Vectorized Model 

• Reduced interpretation overhead. 
• Better cache locality. 
• Compiler optimization opportunities. 
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Today’s Class 

• Storage Models 
• System Architectures 
• Vectorization 
• Compression 
• Distributed Execution 
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Compression Overview 

• Compress the database to reduce the 
amount of I/O needed to process queries. 

• DSM databases compress much better than 
NSM databases. 
– Storing similar data together is ideal for 

compression algorithms. 
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Naïve Compression 

• Use a general purpose algorithm to compress 
pages when they are stored on disk. 
– Example: 10KB page in memory, 4KB 

compressed page on disk. 
• Do we have to decompress the page when it 

is brought into memory? Why or why not? 
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Fixed-width Compression 

• Sacrifice some compression in exchange for 
having uniform-length values per tuple. 
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userID userName userPass hostname lastLogin 
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Original Data 

userID userName userPass hostname lastLogin 
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Variable-Length 
Compression 

Tuples are no longer 
aligned at offsets 

Fixed-Length 
Compression 

userID userName userPass hostname lastLogin 
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7 
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Run-length Encoding 

• Compress runs of the same value into a 
compact triplet: 
– (value, startPosition, runLength) 
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userID sex 

M 
M 
M 
F 
F 
M 
M 
M 
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Original Data 

userID sex 

(M,0,3) 
(F,3,2) 
(M,5,3) 

0 
1 
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3 
4 
5 
6 
7 

Unsorted RLE 

userID sex 

(M,0,6) 
(F,6,2) 
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4 

Sorted RLE 

userID sex 

M 
M 
M 
M 
M 
M 
F 
F 
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2 
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4 

Sorted Data 
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Bit-Vector Encoding 

• Store a separate bit-vector for each unique 
value for a particular attribute where an 
offset in the vector corresponds to a tuple. 
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userID sex 

M 
M 
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Original Data 

userID sex 

M → 1 1 1 0 0 1 1 1 0 
1 
2 
3 
4 
5 
6 
7 

Bit-Vector Compression 

F → 0 0 0 1 1 0 0 0 

A ‘1’ means that the 
tuple at that offset has 
the bit-vector’s value 
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Dictionary Compression 

• Construct a separate table of the unique 
values for an attribute sorted by frequency. 

• For each tuple, store the position of its value 
in the dictionary instead of the real value. 
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userID city 

New York 
San Francisco 
New York 
New York 
Pittsburgh 
San Francisco 
New York 
New York 

0 
1 
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3 
4 
5 
6 
7 

Original Data 

userID city 

0 
1 
0 
0 
2 
1 
0 
0 

0 
1 
2 
3 
4 
5 
6 
7 

Dictionary Encoded 

0→(New York,5) 
1→(San Francisco,2) 
2→(Pittsburgh,1) 

Dictionary 



CMU SCS 

Processing Compressed Data 

• Some operator algorithms can operate 
directly on compressed data 
– Saves I/O without having to decompress! 

• Difficult to implement when the DBMS 
uses multiple compression schemes. 

• It’s generally good to wait as long as 
possible to materialize/decompress data 
when processing queries… 
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Today’s Class 

• Storage Models 
• System Architectures 
• Vectorization 
• Compression 
• Distributed Execution 
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Distributed OLAP 

• Execute analytical queries that examine 
large portions of the database. 

• Used for back-end data warehouses: 
– Example: Data mining 

• Key Challenges: 
– Data movement. 
– Query planning. 

Faloutsos/Pavlo CMU SCS 15-415/615 40 

CMU SCS 

Distributed OLAP 
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P2 

P4 

P5 

P3 

P1 

Partitions 

Application 
Server 

Single OLAP 
Query 
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Distributed Joins Are Hard 

 
• Assume tables are horizontally partitioned: 

– Table1 Partition Key → table1.key 
– Table2 Partition Key → table2.key 

• Q: How to execute? 
• Naïve solution is to send all partitions to a 

single node and compute join. 
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SELECT * FROM table1, table2 
 WHERE table1.val = table2.val 
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Broadcast Join 

• Main Idea: Send the smaller table to all 
nodes where the join is then computed in 
parallel. 
– Only works if the table is small. 
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Semi Join 

• Main Idea: First distribute the join attributes 
between nodes and then recreate the full 
tuples in the final output. 
– Send just enough data from each table to 

compute which rows to include in output. 
• Lots of choices make this problem hard: 

– What to materialize? 
– Which table to send? 
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Rest of the Semester 

• Wed Dec 2nd – Data Warehousing + Mining 
• Mon Dec 7th – Guest Speaker from MemSQL 
• Wed Dec 9th – Final Review + Systems 
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http://cmudb.io/f15-systems  


