
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo
Lecture#25: Column Stores

CMU SCS

Today’s Class

• Storage Models
• System Architectures
• Vectorization
• Compression
• Distributed Execution

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

Wikipedia Example

4

CREATE TABLE pages (
 pageID INT PRIMARY KEY,
 title VARCHAR UNIQUE,
 latest INT REFERENCES revisions (revID),
);

CREATE TABLE revisions (
 revID INT PRIMARY KEY,
 pageID INT REFERENCES pages (pageID),
 userID INT REFERENCES useracct (userID),
 content TEXT,
 updated DATETIME
);

CREATE TABLE useracct (
 userID INT PRIMARY KEY,
 userName VARCHAR UNIQUE,
 ⋮
);

CMU SCS

OLTP

• On-line Transaction Processing:
– Short-lived txns.
– Small footprint.
– Repetitive operations.

Faloutsos/Pavlo 5

UPDATE useracct
 SET lastLogin = NOW(),
 hostname = ?
 WHERE userID = ?

INSERT INTO revisions
VALUES (?,?…,?)

SELECT * FROM useracct
 WHERE userName = ?
 AND userPass = ?

SELECT P.*, R.*
 FROM pages AS P
 INNER JOIN revisions AS R
 ON P.latest = R.revID
 WHERE P.pageID = ?

CMU SCS

OLAP

• On-line Analytical Processing:
– Long running queries.
– Complex joins.
– Exploratory queries.

Faloutsos/Pavlo CMU SCS 15-415/615 6

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE ‘%.gov’
 GROUP BY EXTRACT(month FROM U.lastLogin)

CMU SCS

Data Storage Models

• There are different ways to store tuples.
• We have been assuming the n-ary storage

model this entire semester.

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

n-ary Storage Model

• The DBMS stores all attributes for a single
tuple contiguously in a block.

Faloutsos/Pavlo CMU SCS 15-415/615 8

userID userName userPass lastLogin hostname

userID userName userPass lastLogin hostname

userID userName userPass lastLogin hostname

- - - - -

NSM Disk Page

CMU SCS

n-ary Storage Model

Faloutsos/Pavlo CMU SCS 15-415/615 9

userID userName userPass lastLogin hostname

userID userName userPass lastLogin hostname

userID userName userPass lastLogin hostname

- - - - -

NSM Disk Page

SELECT * FROM useracct
 WHERE userName = ?
 AND userPass = ?

B+Tree

userID userName userPass lastLogin hostname

INSERT INTO useracct
VALUES (?,?,…?)

CMU SCS

n-ary Storage Model

Faloutsos/Pavlo CMU SCS 15-415/615 10

userID userName userPass lastLogin hostname

userID userName userPass lastLogin hostname

userID userName userPass lastLogin hostname

userID userName userPass lastLogin hostname

NSM Disk Page

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE ‘%.gov’
 GROUP BY EXTRACT(month FROM U.lastLogin)

X

CMU SCS

n-ary Storage Model

• Advantages
– Fast inserts, updates, and deletes.
– Good for queries that need the entire tuple.

• Disadvantages
– Not good for scanning large portions of the

table and/or a subset of the attributes.

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

Decomposition Storage Model

• The DBMS stores a single attribute for all
tuples contiguously in a block.

Faloutsos/Pavlo CMU SCS 15-415/615 12

DSM Disk Page

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

userID

userName
userPass

lastLogin

CMU SCS

Decomposition Storage Model

Faloutsos/Pavlo CMU SCS 15-415/615 13

DSM Disk Page

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

hostname hostname hostname hostname hostname

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE ‘%.gov’
 GROUP BY EXTRACT(month FROM U.lastLogin)

CMU SCS

Decomposition Storage Model

• Advantages
– Reduces the amount wasted I/O because the

DBMS only reads the data that it needs.
– Better compression (more on this later).

• Disadvantages
– Slow for point queries, inserts, updates, and

deletes because of tuple splitting/stitching.

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

History

• 1970s: Cantor DBMS
• 1980s: DSM Proposal
• 1990s: SybaseIQ (in-memory only)
• 2000s: Vertica, Vectorwise, MonetDB
• 2010s: Cloudera Impala, Amazon Redshift,

 “The Big Three”

Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU SCS

System Architectures

• Fractured Mirrors
• Partition Attributes Across (PAX)
• Pure Columnar Storage

Faloutsos/Pavlo CMU SCS 15-415/615 16

CMU SCS

Fractured Mirrors

• Store a second copy of the database in a
DSM layout that is automatically updated.
– Examples: Oracle, IBM DB2 BLU

Faloutsos/Pavlo CMU SCS 15-415/615 17

NSM DSM

CMU SCS

PAX

• Data is still stored in NSM blocks, but each
block is organized as mini columns.

Faloutsos/Pavlo CMU SCS 15-415/615 18

PAX Disk Page

hostname lastLogin lastLogin lastLogin lastLogin

userPass userPass hostname hostname hostname

userName userName userName userPass userPass

userID userID userID userID userName

CMU SCS

Column Stores

• Entire system is designed for columnar data.
– Query Processing, Storage, Operator

Algorithms, Indexing, etc.
– Examples: Vertica, VectorWise, Paraccel,

Cloudera Impala, Amazon Redshift

Faloutsos/Pavlo CMU SCS 15-415/615 19

CMU SCS

Virtual IDs vs. Offsets

• Need a way to stitch tuples back together.
• Two approaches:

– Fixed length offsets
– Virtual ids embedded in columns

20

userID userName userPass hostname lastLogin

0
1
2
3
4
5
6
7

userID userName userPass hostname lastLogin

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

Offsets Virtual Ids

CMU SCS

Modifying a Column Store

• INSERT:
– Split tuple into attributes, append to columns.

• DELETE:
– Mark the tuple as deleted in a separate bit-

vector. Check visibility at runtime.
• UPDATE:

– Implement as DELETE+INSERT

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU SCS

Bifurcated Architecture

• All txns are executed on OLTP database.
• Periodically migrate changes to OLAP database.

Faloutsos/Pavlo CMU SCS 15-415/615 22

OLAP
Data Warehouse

OLTP

OLTP

OLTP
Extract

Transform
Load

CMU SCS

Today’s Class

• Storage Models
• System Architectures
• Vectorization
• Compression
• Distributed Execution

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

Query Processing Strategies

• The DBMS needs to process queries
differently when using columnar data.

• We have already discussed the Iterator
Model for processing tuples in the DBMS
query operators.

Faloutsos/Pavlo CMU SCS 15-415/615 24

CMU SCS

Materialization Model

• Each operator consumes its entire input and
generates the full output all at once.

Faloutsos/Pavlo CMU SCS 15-415/615 25

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

CUSTOMER ACCOUNT

σ
⨝
π

acctno=acctno

amt>1000

cname, amt

CMU SCS

Iterator Model

• Each operator calls next() on their child
operator to process tuples one at a time.

Faloutsos/Pavlo CMU SCS 15-415/615 26

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

CUSTOMER ACCOUNT

σ
⨝
π

acctno=acctno

amt>1000

cname, amt

next

next

next

CMU SCS

Observations

• The Materialization Model is a bad because
the intermediate results may be larger than
the amount of memory in the system.

• The Iterator Model is bad with a DSM
because it requires the DBMS to stitch
tuples back together each time.

Faloutsos/Pavlo CMU SCS 15-415/615 27

CMU SCS

Vectorized Model

• Like the Iterator Model but each next()
invocation returns a vector of tuples instead
of a single tuple.

• This vector does not have to contain the
entire tuple, just the attributes that are
needed for query processing.

Faloutsos/Pavlo CMU SCS 15-415/615 28

CMU SCS

Vectorized Model

• Each operator calls next() on their child
operator to process vectors.

Faloutsos/Pavlo CMU SCS 15-415/615 29

SELECT cname, amt
 FROM customer, account
 WHERE customer.acctno =
 account.acctno
 AND account.amt > 1000

CUSTOMER ACCOUNT

σ

⨝
Μ

acctno=acctno

amt>1000

cname, amt

acctno

amt

Μ acctno, amt

next

next

next

next

CMU SCS

Vectorized Model

• Reduced interpretation overhead.
• Better cache locality.
• Compiler optimization opportunities.

Faloutsos/Pavlo CMU SCS 15-415/615 30

CMU SCS

Today’s Class

• Storage Models
• System Architectures
• Vectorization
• Compression
• Distributed Execution

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU SCS

Compression Overview

• Compress the database to reduce the
amount of I/O needed to process queries.

• DSM databases compress much better than
NSM databases.
– Storing similar data together is ideal for

compression algorithms.

Faloutsos/Pavlo CMU SCS 15-415/615 32

CMU SCS

Naïve Compression

• Use a general purpose algorithm to compress
pages when they are stored on disk.
– Example: 10KB page in memory, 4KB

compressed page on disk.
• Do we have to decompress the page when it

is brought into memory? Why or why not?

Faloutsos/Pavlo CMU SCS 15-415/615 33

CMU SCS

Fixed-width Compression

• Sacrifice some compression in exchange for
having uniform-length values per tuple.

Faloutsos/Pavlo CMU SCS 15-415/615 34

userID userName userPass hostname lastLogin

0
1
2
3
4
5
6
7

Original Data

userID userName userPass hostname lastLogin

0
1
2
3
4
5
6
7

Variable-Length
Compression

Tuples are no longer
aligned at offsets

Fixed-Length
Compression

userID userName userPass hostname lastLogin

0
1
2
3
4
5
6
7

CMU SCS

Run-length Encoding

• Compress runs of the same value into a
compact triplet:
– (value, startPosition, runLength)

Faloutsos/Pavlo CMU SCS 15-415/615 35

userID sex

M
M
M
F
F
M
M
M

0
1
2
3
4
5
6
7

Original Data

userID sex

(M,0,3)
(F,3,2)
(M,5,3)

0
1
2
3
4
5
6
7

Unsorted RLE

userID sex

(M,0,6)
(F,6,2)

0
1
2
5
6
7
3
4

Sorted RLE

userID sex

M
M
M
M
M
M
F
F

0
1
2
5
6
7
3
4

Sorted Data

CMU SCS

Bit-Vector Encoding

• Store a separate bit-vector for each unique
value for a particular attribute where an
offset in the vector corresponds to a tuple.

Faloutsos/Pavlo CMU SCS 15-415/615 36

userID sex

M
M
M
F
F
M
M
M

0
1
2
3
4
5
6
7

Original Data

userID sex

M → 1 1 1 0 0 1 1 1 0
1
2
3
4
5
6
7

Bit-Vector Compression

F → 0 0 0 1 1 0 0 0

A ‘1’ means that the
tuple at that offset has
the bit-vector’s value

CMU SCS

Dictionary Compression

• Construct a separate table of the unique
values for an attribute sorted by frequency.

• For each tuple, store the position of its value
in the dictionary instead of the real value.

37

userID city

New York
San Francisco
New York
New York
Pittsburgh
San Francisco
New York
New York

0
1
2
3
4
5
6
7

Original Data

userID city

0
1
0
0
2
1
0
0

0
1
2
3
4
5
6
7

Dictionary Encoded

0→(New York,5)
1→(San Francisco,2)
2→(Pittsburgh,1)

Dictionary

CMU SCS

Processing Compressed Data

• Some operator algorithms can operate
directly on compressed data
– Saves I/O without having to decompress!

• Difficult to implement when the DBMS
uses multiple compression schemes.

• It’s generally good to wait as long as
possible to materialize/decompress data
when processing queries…

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

Today’s Class

• Storage Models
• System Architectures
• Vectorization
• Compression
• Distributed Execution

Faloutsos/Pavlo CMU SCS 15-415/615 39

CMU SCS

Distributed OLAP

• Execute analytical queries that examine
large portions of the database.

• Used for back-end data warehouses:
– Example: Data mining

• Key Challenges:
– Data movement.
– Query planning.

Faloutsos/Pavlo CMU SCS 15-415/615 40

CMU SCS

Distributed OLAP

Faloutsos/Pavlo CMU SCS 15-415/615 41

P2

P4

P5

P3

P1

Partitions

Application
Server

Single OLAP
Query

CMU SCS

Distributed Joins Are Hard

• Assume tables are horizontally partitioned:

– Table1 Partition Key → table1.key
– Table2 Partition Key → table2.key

• Q: How to execute?
• Naïve solution is to send all partitions to a

single node and compute join.

Faloutsos/Pavlo CMU SCS 15-415/615 42

SELECT * FROM table1, table2
 WHERE table1.val = table2.val

CMU SCS

Broadcast Join

• Main Idea: Send the smaller table to all
nodes where the join is then computed in
parallel.
– Only works if the table is small.

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Semi Join

• Main Idea: First distribute the join attributes
between nodes and then recreate the full
tuples in the final output.
– Send just enough data from each table to

compute which rows to include in output.
• Lots of choices make this problem hard:

– What to materialize?
– Which table to send?

Faloutsos/Pavlo CMU SCS 15-415/615 44

CMU SCS

Rest of the Semester

• Wed Dec 2nd – Data Warehousing + Mining
• Mon Dec 7th – Guest Speaker from MemSQL
• Wed Dec 9th – Final Review + Systems

Faloutsos/Pavlo CMU SCS 15-415/615 45

http://cmudb.io/f15-systems

