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Crash Recovery

» Recovery algorithms are techniques to
ensure database consistency, transaction
atomicity and durability despite failures.

» Recovery algorithms have two parts:

— Actions during normal txn processing to ensure
that the DBMS can recover from a failure.

— Actions after a failure to recover the database to
a state that ensures atomicity, consistency, and
durability.
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Crash Recovery

 DBMS is divided into different components
based on the underlying storage device.

» Need to also classify the different types of
failures that the DBMS needs to handle.
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Storage Types

* Volatile Storage:
— Data does not persist after power is cut.
— Examples: DRAM, SRAM

* Non-volatile Storage:
— Data persists after losing power.

— Examples: HDD, SDD | Use multiple storage
« Stable Storage: devices to approximate.

1

: el
— A non-existent form of non-volatile storage that
survives all possible failures scenarios.
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Failure Classification

 Transaction Failures
o System Failures
 Storage Media Failures
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Transaction Failures

* Logical Errors:

— Transaction cannot complete due to some
internal error condition (e.g., integrity
constraint violation).

e Internal State Errors:

— DBMS must terminate an active transaction due
to an error condition (e.g., deadlock)
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System Failures

» Software Failure:
— Problem with the DBMS implementation (e.g.,
uncaught divide-by-zero exception).
 Hardware Failure:

— The computer hosting the DBMS crashes (e.g.,
power plug gets pulled).

— Fail-stop Assumption: Non-volatile storage
contents are assumed to not be corrupted by
system crash.
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Storage Media Failure

* Non-Repairable Hardware Failure:

— A head crash or similar disk failure destroys all
or part of non-volatile storage.

— Destruction is assumed to be detectable (e.g.,

disk controller use checksums to detect failures).

 No DBMS can recover from this. Database
must be restored from archived version.
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Problem Definition

 Primary storage location of records is on
non-volatile storage, but this is much slower
than volatile storage.

 Use volatile memory for faster access:
— First copy target record into memory.
— Perform the writes in memory.
— Write dirty records back to disk.
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Problem Definition

* Need to ensure:

— The changes for any txn are durable once the
DBMS has told somebody that it committed.

— No changes are durable if the txn aborted.
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Undo vs. Redo

» Undo: The process of removing the effects of
an incomplete or aborted txn.

» Redo: The process of re-instating the effects
of a committed txn for durability.

* How the DBMS supports this functionality
depends on how it manages the buffer pool...
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Buffer Pool Management

Is T1 allowed to
overwrite A even
though it hasn’t

Do we force T2’s changes to
be written to disk?

BE committed? o

R(A) -

W(A) BEGIN A=3|B=88| C=7s.
R(B) 9-?
W(B) %
COMMIT

»AabRT
v \

What happens when we jmory
need to rollback T1?
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Buffer Pool — Steal Policy

e Whether the DBMS allows an uncommitted
txn to overwrite the most recent committed
value of an object in non-volatile storage.

— STEAL.: Is allowed.
— NO-STEAL.: Is not allowed.
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Buffer Pool — Force Policy NO-STEAL + FORCE
Schedule ( NO-STEAL means tha
t
» Whether the DBMS ensures that all updates T T2 onanges gic':}srl\(nget.e

made by a txn are reflected on non-volatile #Ef,ﬁf" ( BU%«/ Q

storage before the txn is allowed to commit: W(A) R e s

BEGIN

fed

— FORCE: Is enforced. rRe) | | — — [ 1A=1]p=s¢|c=7
— NO-FORCE: Is not enforced. comprr __
*AB:ORT Disk
. . . FORCE means that T2
» Force writes makes it easier to recover but s rivial t be written
results in poor runtime performance. Now it's iWial o his point.
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NO-STEAL + FORCE Today’s Class

 This approach is the easiest to implement:

— Never have to undo changes of an aborted txn
because the changes were not written to disk.

— Never have to redo changes of a committed txn
because all the changes are guaranteed to be
written to disk at commit time.

o But this will be slow...
e What if txn modifies the entire database?

Write-Ahead Log
Checkpoints
Logging Schemes
Recovery Protocol
Shadow Paging
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Write-Ahead Log

» Record the changes made to the database in a
log before the change is made.

— Assume that the log is on stable storage.

— Log contains sufficient information to perform
the necessary undo and redo actions to restore
the database after a crash.

o Buffer Pool; STEAL + NO-FORCE
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Write-Ahead Log Protocol

 All log records pertaining to an updated
page are written to non-volatile storage
before the page itself is allowed to be over-
written in non-volatile storage.

» A txn is not considered committed until all
its log records have been written to stable
storage.
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Write-Ahead Log Protocol

* Log record format:
— <txnld, objectId, beforeValue, afterValue>

— Each transaction writes a log record first, before
doing the change.

— Write a <BEGIN> record to mark txn starting point.

* When a txn finishes, the DBMS wiill:
— Write a <COMMIT> record on the log

— Make sure that all log records are flushed before
it returns an acknowledgement to application.
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Write-Ahead Log — Example

Objectld N » Before Value
Txnld § b After Value
<T1 commit> \ -
CRASH]! e
N \\
4 N\
Buffer Pool A=99 | B=5
The result is deemed g8 | Bo10 Non-Volatile
safe to return to app. Storage
. J
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WAL - Implementation Details

» When should we write log entries to disk?
— When the transaction commits.

— Can use group commit to batch multiple log
flushes together to amortize overhead.

* When should we write dirty records to disk?
— Every time the txn executes an update?
— Once when the txn commits?
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WAL — Deferred Updates

 Observation: If we prevent the DBMS from
writing dirty records to disk until the txn
commits, then we don’t need to store their
original values.

4 )

WAL

<T1 begin>
<T1, A, 99, 88>
<T1, B, X, 10>
<T1 commit>
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WAL — Deferred Updates

* Observation: If we prevent the DBMS from
writing dirty records to disk until the txn
commits, then we don’t need to store their

Replay the log and
redo each update.

Simply ignore all of
T1’s updates.

<T1 begin>
<T1, A, 88>
<T1, B, 10>

<T1 begin>
<T1, A, 88>
<T1, B, 10>
CRASH!

<T1 commit>
CRASH!
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WAL — Deferred Updates

» This won’t work if the change set of a txn is
larger than the amount of memory available.

— Example: Update all salaries by 5%

* The DBMS cannot undo changes for an
aborted txn if it doesn’t have the original
values in the log.

* We need to use the STEAL policy.
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WAL — Buffer Pool Policies

Undo + Redo
NO-S

N

Slowest

NO-STEAL STEAL

NO-FORCE - Fastest NO-FORCE -

FORCE | S|lowest -

FORCE/FaSteSt -
Runtime [ no undo + |Recovery
Performance| NoRedo Jerformance

Almost every DBMS uses NO-FORCE + STEAL
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Today’s Class

Checkpoints
Logging Schemes
Recovery Protocol
Shadow Paging
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Checkpoints

» The WAL will grow forever.

 After a crash, the DBMS has to replay the
entire log which will take a long time.

» The DBMS periodically takes a checkpoint
where it flushes all buffers out to disk.
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Checkpoints

» Output onto stable storage all log records
currently residing in main memory.

 QOutput to the disk all modified blocks.

 \Write a <CHECKPOINT> entry to the log and
flush to stable storage.
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Checkpoints

] . Any txn that committed before
the checkpoint is ignored (T1).

e T2 + T3 did not commit before
the last checkpoint.

— Need to redo T2 because it
committed after checkpoint.

— Need to undo T3 because it did
not commit before the crash.

Faloutsos/Pavlo CMU SCS 15-415/615 33

CMU sCs

Checkpoints — Challenges

» We have to stall all txns when take a
checkpoint to ensure a consistent snapshot.

 Scanning the log to find uncommitted can
take a long time.

» Not obvious how often the DBMS should
take a checkpoint.
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Checkpoints — Frequency

» Checkpointing too often causes the runtime
performance to degrade.
— System spends too much time flushing buffers.
» But waiting a long time is just as bad:
— The checkpoint will be large and slow.
— Makes recovery time much longer.
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Today’s Class

» Logging Schemes
* Recovery Protocol
» Shadow Paging
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Logging Schemes

» Physical Logging: Record the changes
made to a specific location in the database.

— Example: Position of a record in a page.
 Logical Logging: Record the high-level
operations executed by txns.

— Example: The UPDATE, DELETE, and INSERT
queries invoked by a txn.
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Physical vs. Logical Logging

 Logical logging requires less data written in
each log record than physical logging.

« Difficult to implement recovery with logical
logging if you have concurrent txns.

— Hard to determine which parts of the database
may have been modified by a query before crash.

— Also takes longer to recover because you must
re-execute every txn all over again.
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Physiological Logging

» Hybrid approach where log records target a
single page but do not specify data
organization of the page.

 This is the most popular approach.

Faloutsos/Pavlo CMU SCS 15-415/615 39

g CMU SCS

Logging Schemes
INSERT INTO X VALUES(1,2,3);
Physical Logical Physiological
<T1, <T1, <T1,
Table=X, “INSERT INTO X Table=X,
Page=99, VALUES(1,2,3)"> Page=99,
Offset=4, Record=(1,2,3)>
Record=(1,2,3)>
<T1,
<T1, Index=X_ PKEY,
Index=X PKEY, IndexPage=45,
Page=45, Key=(1,Recordl)>
0ffset=9,
Key=(1,Recordlza7 £;7 p
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Today’s Class

* Recovery Protocol
» Shadow Paging
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Crash Recovery

» Recovery algorithms are techniques to
ensure database consistency, transaction
atomicity and durability despite failures.

» Recovery algorithms have two parts:

— Actions during normal txn processing to ensure
that the DBMS can recover from a failure.

— Actions after a failure to recover the database to
a state that ensures atomicity, consistency, and
durability.
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Today's Class — ARIES

* Algorithms for Recovery and Isolation
Exploiting Semantics
— Write-ahead Logging
— Repeating History during Redo
— Logging Changes during Undo
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ARIES

» Developed at IBM during the early 1990s.
» Considered the “gold standard” in database
crash recovery.
— Implemented in DB2.

— Everybody else more or less
implements a variant of it.

C. Mohan
IBM Fellow
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ARIES — Main Ideas

* Write-Ahead Logging:

— Any change is recorded in log on stable storage
before the database change is written to disk.

» Repeating History During Redo:
— On restart, retrace actions and restore database
to exact state before crash.
* Logging Changes During Undo:

— Record undo actions to log to ensure action is
not repeated in the event of repeated failures.
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ARIES — Main Ideas

» Write Ahead Logging
— Fast, during normal operation

— Least interference with OS (i.e., STEAL, NO
FORCE)

 Fast (fuzzy) checkpoints
* On Recovery:

— Redo everything.

— Undo uncommitted txns.
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ARIES - Recovery Phases

» Analysis: Read the WAL to identify dirty
pages in the buffer pool and active txns at
the time of the crash.

» Redo: Repeat all actions starting from an
appropriate point in the log.

e Undo: Reverse the actions of txns that did
not commit before the crash.
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ARIES - Overview

Oldestlog | « Start from last checkpoint found
record of b o+ A via Master Record.
« Three phases.
recordin dirg | - — Analysis - Figure out which
page ta/g'e after txns committed or failed since
nalysis .
checkpoint.
— Redo all actions (repeat
Last checkpoint -.- history)
l v — Undo effects of failed txns.
CRASH! —
ARU
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Additional Crash Issues Today’s Class

» What happens if system crashes during the
Analysis Phase? During the Redo Phase?

* How do you limit the amount of work in the
Redo Phase?
— Flush asynchronously in the background.

* How do you limit the amount of work in the
Undo Phase?
— Avoid long-running txns.

» Shadow Paging
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Shadow Paging Shadow Paging
» Maintain two separate copies of the » Database is a tree whose root is a single
database (master, shadow) disk block.
» Updates are only made in the shadow copy. » There are two copies of the tree, the master
« When a txn commits, atomically switch the and shadow
shadow to become the new master. — The root points to the master copy.

Buffer Pool: NO-STEAL + EFORCE — Updates are applied to the shadow copy.

Portions courtesy of the great Phil Bernstein
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Shadow Paging — Example

. )
f Memory (Non-Volatile Storage
1 /'_ﬂ |
2 | |
3 —_
: E—— |
Master —>| |
Page Table
DB Root
Pages on Disk
\- J
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Shadow Paging

 To install the updates, overwrite the root so
it points to the shadow, thereby swapping
the master and shadow:

— Before overwriting the root, none of the
transaction’s updates are part of the disk-
resident database

— After overwriting the root, all of the
transaction’s updates are part of the disk-
resident database.

Portions courtesy of the great Phil Bernstein
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Shadow Paging — Example

Read-only txns access
the current master.

()

(Non-Volatile Storage\

: - X ]

25 ] |

4

Master >->| X l

~ . _ Page Table —>1 X |

DB Ro ~

e~ —| |

g —] |
J < o~ |

4 w T ay

Shadow S

il S 1‘ Pages on Disk

/

Page Table )
~ /

[

Active modifying txn )
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Shadow Paging — Undo/Redo

» Supporting rollbacks and recovery is easy.

e Undo:

— Simply remove the shadow pages. Leave the
master and the DB root pointer alone.

* Redo:
— Not needed at all.
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Shadow Paging — Advantages

* No overhead of writing log records.
* Recovery is trivial.
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Shadow Paging — Disadvantages

» Copying the entire page table is expensive:
— Use a page table structured like a B+tree
— No need to copy entire tree, only need to copy

paths in the tree that lead to updated leaf nodes

o Commit overhead is high:
— Flush every updated page, page table, & root.
— Data gets fragmented.
— Need garbage collection.
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Summary

» Write-Ahead Log to handle loss of volatile
storage.

» Use incremental updates (i.e., STEAL, NO-
FORCE) with checkpoints.

* On recovery: undo uncommitted txns + redo
committed txns.
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Conclusion

» Recovery is really hard.

 Be thankful that you don’t have to write it
yourself.
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