
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo
Lecture#23: Crash Recovery

(R&G ch. 18)

CMU SCS

Last Class

• Basic Timestamp Ordering
• Optimistic Concurrency Control
• Multi-Version Concurrency Control
• Multi-Version+2PL
• Partition-based T/O

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

Today’s Class

• Overview
• Write-Ahead Log
• Checkpoints
• Logging Schemes
• Recovery Protocol
• Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615 3

CMU SCS

Motivation

Faloutsos/Pavlo CMU SCS 15-415/615 4

BEGIN
R(A)
W(A)
 ⋮
COMMIT

T1
Buffer Pool

Disk

A=1

Page

A=1

Memory

A=2

CMU SCS

Crash Recovery

• Recovery algorithms are techniques to
ensure database consistency, transaction
atomicity and durability despite failures.

• Recovery algorithms have two parts:
– Actions during normal txn processing to ensure

that the DBMS can recover from a failure.
– Actions after a failure to recover the database to

a state that ensures atomicity, consistency, and
durability.

 Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

Crash Recovery

• DBMS is divided into different components
based on the underlying storage device.

• Need to also classify the different types of
failures that the DBMS needs to handle.

Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

Storage Types

• Volatile Storage:
– Data does not persist after power is cut.
– Examples: DRAM, SRAM

• Non-volatile Storage:
– Data persists after losing power.
– Examples: HDD, SDD

• Stable Storage:
– A non-existent form of non-volatile storage that

survives all possible failures scenarios.
Faloutsos/Pavlo CMU SCS 15-415/615 7

Use multiple storage
devices to approximate.

CMU SCS

Failure Classification

• Transaction Failures
• System Failures
• Storage Media Failures

Faloutsos/Pavlo CMU SCS 15-415/615 8

CMU SCS

Transaction Failures

• Logical Errors:
– Transaction cannot complete due to some

internal error condition (e.g., integrity
constraint violation).

• Internal State Errors:
– DBMS must terminate an active transaction due

to an error condition (e.g., deadlock)

Faloutsos/Pavlo CMU SCS 15-415/615 9

CMU SCS

System Failures

• Software Failure:
– Problem with the DBMS implementation (e.g.,

uncaught divide-by-zero exception).
• Hardware Failure:

– The computer hosting the DBMS crashes (e.g.,
power plug gets pulled).

– Fail-stop Assumption: Non-volatile storage
contents are assumed to not be corrupted by
system crash.

Faloutsos/Pavlo CMU SCS 15-415/615 10

CMU SCS

Storage Media Failure

• Non-Repairable Hardware Failure:
– A head crash or similar disk failure destroys all

or part of non-volatile storage.
– Destruction is assumed to be detectable (e.g.,

disk controller use checksums to detect failures).

• No DBMS can recover from this. Database
must be restored from archived version.

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

Problem Definition

• Primary storage location of records is on
non-volatile storage, but this is much slower
than volatile storage.

• Use volatile memory for faster access:
– First copy target record into memory.
– Perform the writes in memory.
– Write dirty records back to disk.

Faloutsos/Pavlo CMU SCS 15-415/615 12

CMU SCS

Problem Definition

• Need to ensure:
– The changes for any txn are durable once the

DBMS has told somebody that it committed.
– No changes are durable if the txn aborted.

Faloutsos/Pavlo CMU SCS 15-415/615 13

CMU SCS

Undo vs. Redo

• Undo: The process of removing the effects of
an incomplete or aborted txn.

• Redo: The process of re-instating the effects
of a committed txn for durability.

• How the DBMS supports this functionality
depends on how it manages the buffer pool…

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Buffer Pool Management

Faloutsos/Pavlo CMU SCS 15-415/615 15

Buffer Pool

Disk

A=1 B=99 C=7

Page
A=1 B=99 C=7

Memory

B=88

BEGIN
R(A)
W(A)

 ⋮
ABORT

T1 T2

BEGIN
R(B)
W(B)
COMMIT

Schedule

A=3

Do we force T2’s changes to
be written to disk?

Is T1 allowed to
overwrite A even
though it hasn’t

committed?

What happens when we
need to rollback T1?

B=88 A=3

CMU SCS

Buffer Pool – Steal Policy

• Whether the DBMS allows an uncommitted
txn to overwrite the most recent committed
value of an object in non-volatile storage.
– STEAL: Is allowed.
– NO-STEAL: Is not allowed.

Faloutsos/Pavlo CMU SCS 15-415/615 16

CMU SCS

Buffer Pool – Force Policy

• Whether the DBMS ensures that all updates
made by a txn are reflected on non-volatile
storage before the txn is allowed to commit:
– FORCE: Is enforced.
– NO-FORCE: Is not enforced.

• Force writes makes it easier to recover but

results in poor runtime performance.

Faloutsos/Pavlo CMU SCS 15-415/615 17

CMU SCS

NO-STEAL + FORCE

Faloutsos/Pavlo CMU SCS 15-415/615 18

Buffer Pool

Disk

A=1 B=99 C=7

Page

A=1 B=99 C=7

Memory

B=88

BEGIN
R(A)
W(A)

 ⋮
ABORT

T1 T2

BEGIN
R(B)
W(B)
COMMIT

Schedule

A=3

B=88

FORCE means that T2
changes must be written

to disk at this point.

NO-STEAL means that
T1 changes cannot be

written to disk yet.

Now it’s trivial to
rollback T1.

CMU SCS

NO-STEAL + FORCE

• This approach is the easiest to implement:
– Never have to undo changes of an aborted txn

because the changes were not written to disk.
– Never have to redo changes of a committed txn

because all the changes are guaranteed to be
written to disk at commit time.

• But this will be slow…
• What if txn modifies the entire database?

Faloutsos/Pavlo CMU SCS 15-415/615 19

CMU SCS

Today’s Class

• Overview
• Write-Ahead Log
• Checkpoints
• Logging Schemes
• Recovery Protocol
• Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU SCS

Write-Ahead Log

• Record the changes made to the database in a
log before the change is made.
– Assume that the log is on stable storage.
– Log contains sufficient information to perform

the necessary undo and redo actions to restore
the database after a crash.

• Buffer Pool: STEAL + NO-FORCE

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU SCS

Write-Ahead Log Protocol

• All log records pertaining to an updated
page are written to non-volatile storage
before the page itself is allowed to be over-
written in non-volatile storage.

• A txn is not considered committed until all
its log records have been written to stable
storage.

Faloutsos/Pavlo CMU SCS 15-415/615 22

CMU SCS

Write-Ahead Log Protocol

• Log record format:
– <txnId, objectId, beforeValue, afterValue>
– Each transaction writes a log record first, before

doing the change.
– Write a <BEGIN> record to mark txn starting point.

• When a txn finishes, the DBMS will:
– Write a <COMMIT> record on the log
– Make sure that all log records are flushed before

it returns an acknowledgement to application.
Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU SCS

Non-Volatile
Storage

WAL

BEGIN
W(A)
W(B)
 ⋮
COMMIT

T1

Write-Ahead Log – Example

Faloutsos/Pavlo 24

<T1 begin>
<T1, A, 99, 88>
<T1, B, 5, 10>
<T1 commit>
 ⋮
 CRASH!

ObjectId
TxnId

The result is deemed
safe to return to app.

Buffer Pool

A=99 B=5

A=99 B=5

A=88 B=10

Before Value
After Value

Volatile Storage

CMU SCS

WAL – Implementation Details

• When should we write log entries to disk?
– When the transaction commits.
– Can use group commit to batch multiple log

flushes together to amortize overhead.

• When should we write dirty records to disk?
– Every time the txn executes an update?
– Once when the txn commits?

Faloutsos/Pavlo CMU SCS 15-415/615 25

CMU SCS

WAL – Deferred Updates

• Observation: If we prevent the DBMS from
writing dirty records to disk until the txn
commits, then we don’t need to store their
original values.

Faloutsos/Pavlo CMU SCS 15-415/615 26

WAL
<T1 begin>
<T1, A, 99, 88>
<T1, B, 5, 10>
<T1 commit>

X
X

CMU SCS

WAL – Deferred Updates

• Observation: If we prevent the DBMS from
writing dirty records to disk until the txn
commits, then we don’t need to store their
original values.

Faloutsos/Pavlo CMU SCS 15-415/615 27

WAL
<T1 begin>
<T1, A, 88>
<T1, B, 10>
<T1 commit>
CRASH!

WAL
<T1 begin>
<T1, A, 88>
<T1, B, 10>
CRASH!

Replay the log and
redo each update.

Simply ignore all of
T1’s updates.

CMU SCS

WAL – Deferred Updates

• This won’t work if the change set of a txn is
larger than the amount of memory available.
– Example: Update all salaries by 5%

• The DBMS cannot undo changes for an
aborted txn if it doesn’t have the original
values in the log.

• We need to use the STEAL policy.

Faloutsos/Pavlo CMU SCS 15-415/615 28

CMU SCS

WAL – Buffer Pool Policies

Faloutsos/Pavlo CMU SCS 15-415/615 29

NO-STEAL STEAL

NO-FORCE – Fastest

FORCE Slowest –

Runtime
Performance

NO-STEAL STEAL

NO-FORCE – Slowest

FORCE Fastest –

Recovery
Performance

Undo + Redo

No Undo +
No Redo

Almost every DBMS uses NO-FORCE + STEAL

CMU SCS

Today’s Class

• Overview
• Write-Ahead Log
• Checkpoints
• Logging Schemes
• Recovery Protocol
• Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615 30

CMU SCS

Checkpoints

• The WAL will grow forever.
• After a crash, the DBMS has to replay the

entire log which will take a long time.
• The DBMS periodically takes a checkpoint

where it flushes all buffers out to disk.

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU SCS

Checkpoints

• Output onto stable storage all log records
currently residing in main memory.

• Output to the disk all modified blocks.
• Write a <CHECKPOINT> entry to the log and

flush to stable storage.

Faloutsos/Pavlo CMU SCS 15-415/615 32

CMU SCS

Checkpoints

• Any txn that committed before
the checkpoint is ignored (T1).

• T2 + T3 did not commit before
the last checkpoint.
– Need to redo T2 because it

committed after checkpoint.
– Need to undo T3 because it did

not commit before the crash.

Faloutsos/Pavlo CMU SCS 15-415/615 33

WAL

<T1 begin>
<T1, A, 1, 2>
<T1 commit>
<T2 begin>
<T2, A, 2, 3>
<T3 begin>
<CHECKPOINT>
<T2 commit>
<T3, A, 3, 4>
 ⋮
CRASH!

CMU SCS

Checkpoints – Challenges

• We have to stall all txns when take a
checkpoint to ensure a consistent snapshot.

• Scanning the log to find uncommitted can
take a long time.

• Not obvious how often the DBMS should
take a checkpoint.

Faloutsos/Pavlo CMU SCS 15-415/615 34

CMU SCS

Checkpoints – Frequency

• Checkpointing too often causes the runtime
performance to degrade.
– System spends too much time flushing buffers.

• But waiting a long time is just as bad:
– The checkpoint will be large and slow.
– Makes recovery time much longer.

Faloutsos/Pavlo CMU SCS 15-415/615 35

CMU SCS

Today’s Class

• Overview
• Write-Ahead Log
• Checkpoints
• Logging Schemes
• Recovery Protocol
• Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615 36

CMU SCS

Logging Schemes

• Physical Logging: Record the changes
made to a specific location in the database.
– Example: Position of a record in a page.

• Logical Logging: Record the high-level
operations executed by txns.
– Example: The UPDATE, DELETE, and INSERT

queries invoked by a txn.

Faloutsos/Pavlo CMU SCS 15-415/615 37

CMU SCS

Physical vs. Logical Logging

• Logical logging requires less data written in
each log record than physical logging.

• Difficult to implement recovery with logical
logging if you have concurrent txns.
– Hard to determine which parts of the database

may have been modified by a query before crash.
– Also takes longer to recover because you must

re-execute every txn all over again.

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

Physiological Logging

• Hybrid approach where log records target a
single page but do not specify data
organization of the page.

• This is the most popular approach.

Faloutsos/Pavlo CMU SCS 15-415/615 39

CMU SCS

Logging Schemes

Faloutsos/Pavlo CMU SCS 15-415/615 40

INSERT INTO X VALUES(1,2,3);

Physical

<T1,
 Table=X,
 Page=99,
 Offset=4,
 Record=(1,2,3)>

<T1,
 Index=X_PKEY,
 Page=45,
 Offset=9,
 Key=(1,Record1)>

Logical

<T1,
 “INSERT INTO X
 VALUES(1,2,3)”>

Physiological

<T1,
 Table=X,
 Page=99,
 Record=(1,2,3)>

<T1,
 Index=X_PKEY,
 IndexPage=45,
 Key=(1,Record1)>

CMU SCS

Today’s Class

• Overview
• Write-Ahead Log
• Checkpoints
• Logging Schemes
• Recovery Protocol
• Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCS

Crash Recovery

• Recovery algorithms are techniques to
ensure database consistency, transaction
atomicity and durability despite failures.

• Recovery algorithms have two parts:
– Actions during normal txn processing to ensure

that the DBMS can recover from a failure.
– Actions after a failure to recover the database to

a state that ensures atomicity, consistency, and
durability.

 Faloutsos/Pavlo CMU SCS 15-415/615 42

CMU SCS

Today's Class – ARIES

• Algorithms for Recovery and Isolation
Exploiting Semantics
– Write-ahead Logging
– Repeating History during Redo
– Logging Changes during Undo

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

ARIES

• Developed at IBM during the early 1990s.
• Considered the “gold standard” in database

crash recovery.
– Implemented in DB2.
– Everybody else more or less

implements a variant of it.

Faloutsos/Pavlo CMU SCS 15-415/615 44

C. Mohan
IBM Fellow

CMU SCS

ARIES – Main Ideas

• Write-Ahead Logging:
– Any change is recorded in log on stable storage

before the database change is written to disk.
• Repeating History During Redo:

– On restart, retrace actions and restore database
to exact state before crash.

• Logging Changes During Undo:
– Record undo actions to log to ensure action is

not repeated in the event of repeated failures.
Faloutsos/Pavlo CMU SCS 15-415/615 46

CMU SCS

ARIES – Main Ideas

• Write Ahead Logging
– Fast, during normal operation
– Least interference with OS (i.e., STEAL, NO

FORCE)
• Fast (fuzzy) checkpoints
• On Recovery:

– Redo everything.
– Undo uncommitted txns.

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

ARIES – Recovery Phases

• Analysis: Read the WAL to identify dirty
pages in the buffer pool and active txns at
the time of the crash.

• Redo: Repeat all actions starting from an
appropriate point in the log.

• Undo: Reverse the actions of txns that did
not commit before the crash.

Faloutsos/Pavlo CMU SCS 15-415/615 48

CMU SCS

ARIES - Overview

49

• Start from last checkpoint found
via Master Record.

• Three phases.
– Analysis - Figure out which

txns committed or failed since
checkpoint.

– Redo all actions (repeat
history)

– Undo effects of failed txns.

Oldest log
record of txn

active at crash

Oldest log
record in dirty

page table after
Analysis

Last checkpoint

CRASH!
A R U

CMU SCS

Additional Crash Issues

• What happens if system crashes during the
Analysis Phase? During the Redo Phase?

• How do you limit the amount of work in the
Redo Phase?
– Flush asynchronously in the background.

• How do you limit the amount of work in the
Undo Phase?
– Avoid long-running txns.

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

Today’s Class

• Overview
• Write-Ahead Log
• Checkpoints
• Logging Schemes
• Recovery Protocol
• Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615 51

CMU SCS

Shadow Paging

• Maintain two separate copies of the
database (master, shadow)

• Updates are only made in the shadow copy.
• When a txn commits, atomically switch the

shadow to become the new master.
• Buffer Pool: NO-STEAL + FORCE

Faloutsos/Pavlo CMU SCS 15-415/615 52

CMU SCS

Shadow Paging

• Database is a tree whose root is a single
disk block.

• There are two copies of the tree, the master
and shadow
– The root points to the master copy.
– Updates are applied to the shadow copy.

Faloutsos/Pavlo CMU SCS 15-415/615 53
Portions courtesy of the great Phil Bernstein

CMU SCS

Non-Volatile Storage

Pages on Disk

Memory

Shadow Paging – Example

Faloutsos/Pavlo CMU SCS 15-415/615 54

Master
Page Table

1
2
3
4

DB Root

CMU SCS

Shadow Paging

• To install the updates, overwrite the root so
it points to the shadow, thereby swapping
the master and shadow:
– Before overwriting the root, none of the

transaction’s updates are part of the disk-
resident database

– After overwriting the root, all of the
transaction’s updates are part of the disk-
resident database.

Faloutsos/Pavlo CMU SCS 15-415/615 55
Portions courtesy of the great Phil Bernstein

CMU SCS

Non-Volatile Storage

Pages on Disk

Memory

Shadow Paging – Example

Faloutsos/Pavlo CMU SCS 15-415/615 56

Shadow
Page Table

1
2
3
4

Master
Page Table

1
2
3
4

DB Root

Read-only txns access
the current master.

Active modifying txn
updates shadow pages.

X

X
X

X

✔

CMU SCS

Shadow Paging – Undo/Redo

• Supporting rollbacks and recovery is easy.
• Undo:

– Simply remove the shadow pages. Leave the
master and the DB root pointer alone.

• Redo:
– Not needed at all.

Faloutsos/Pavlo CMU SCS 15-415/615 57

CMU SCS

Shadow Paging – Advantages

• No overhead of writing log records.
• Recovery is trivial.

Faloutsos/Pavlo CMU SCS 15-415/615 58

CMU SCS

Shadow Paging – Disadvantages

• Copying the entire page table is expensive:
– Use a page table structured like a B+tree
– No need to copy entire tree, only need to copy

paths in the tree that lead to updated leaf nodes
• Commit overhead is high:

– Flush every updated page, page table, & root.
– Data gets fragmented.
– Need garbage collection.

Faloutsos/Pavlo CMU SCS 15-415/615 59

CMU SCS

Summary

• Write-Ahead Log to handle loss of volatile
storage.

• Use incremental updates (i.e., STEAL, NO-
FORCE) with checkpoints.

• On recovery: undo uncommitted txns + redo
committed txns.

Faloutsos/Pavlo CMU SCS 15-415/615 60

CMU SCS

Conclusion

• Recovery is really hard.
• Be thankful that you don’t have to write it

yourself.

Faloutsos/Pavlo CMU SCS 15-415/615 61

