g CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#23: Crash Recovery

‘% CMU SCS

Last Class

Basic Timestamp Ordering
Optimistic Concurrency Control
Multi-Version Concurrency Control
Multi-Version+2PL

Partition-based T/O

(R&G ch. 18)

Today’s Class Motivation
* Overview T1
» Write-Ahead Log BEGIN Buffer Pool
* Checkpoints 3322; THEEES O .
 Logging Schemes *CBMMIT "1 A=]»L;,g;
» Recovery Protocol L/

: Disk
» Shadow Paging \

Faloutsos/Pavlo CMU SCS 15-415/615

Faloutsos/Pavlo

Memory

CMU SCs 15-415/615

g CMU SCS

Crash Recovery

» Recovery algorithms are techniques to
ensure database consistency, transaction
atomicity and durability despite failures.

» Recovery algorithms have two parts:

— Actions during normal txn processing to ensure
that the DBMS can recover from a failure.

— Actions after a failure to recover the database to
a state that ensures atomicity, consistency, and
durability.

Faloutsos/Pavlo CMU SCS 15-415/615 5

% CMU SCS

Crash Recovery

 DBMS is divided into different components
based on the underlying storage device.

» Need to also classify the different types of
failures that the DBMS needs to handle.

Faloutsos/Pavlo CMU SCS 15-415/615 6

g cMu scs
Storage Types

* Volatile Storage:
— Data does not persist after power is cut.
— Examples: DRAM, SRAM

* Non-volatile Storage:
— Data persists after losing power.

— Examples: HDD, SDD | Use multiple storage
« Stable Storage: devices to approximate.

1

: el
— A non-existent form of non-volatile storage that
survives all possible failures scenarios.

Faloutsos/Pavlo CMU SCS 15-415/615 7

g CMU SCS

Failure Classification

 Transaction Failures
o System Failures
 Storage Media Failures

Faloutsos/Pavlo CMU SCS 15-415/615

g CMU SCS

Transaction Failures

* Logical Errors:

— Transaction cannot complete due to some
internal error condition (e.g., integrity
constraint violation).

e Internal State Errors:

— DBMS must terminate an active transaction due
to an error condition (e.g., deadlock)

Faloutsos/Pavlo CMU SCS 15-415/615 9

% CMU SCS

System Failures

» Software Failure:
— Problem with the DBMS implementation (e.g.,
uncaught divide-by-zero exception).
 Hardware Failure:

— The computer hosting the DBMS crashes (e.g.,
power plug gets pulled).

— Fail-stop Assumption: Non-volatile storage
contents are assumed to not be corrupted by
system crash.

Faloutsos/Pavlo CMU SCs 15-415/615 10

CMU sCSs

Storage Media Failure

* Non-Repairable Hardware Failure:

— A head crash or similar disk failure destroys all
or part of non-volatile storage.

— Destruction is assumed to be detectable (e.g.,

disk controller use checksums to detect failures).

 No DBMS can recover from this. Database
must be restored from archived version.

Faloutsos/Pavlo CMU SCS 15-415/615 11

g CMU SCS

Problem Definition

 Primary storage location of records is on
non-volatile storage, but this is much slower
than volatile storage.

 Use volatile memory for faster access:
— First copy target record into memory.
— Perform the writes in memory.
— Write dirty records back to disk.

Faloutsos/Pavlo CMU SCs 15-415/615 12

g CMU SCS

Problem Definition

* Need to ensure:

— The changes for any txn are durable once the
DBMS has told somebody that it committed.

— No changes are durable if the txn aborted.

Faloutsos/Pavlo CMU SCS 15-415/615 13

Vg CMU sCs
Undo vs. Redo

» Undo: The process of removing the effects of
an incomplete or aborted txn.

» Redo: The process of re-instating the effects
of a committed txn for durability.

* How the DBMS supports this functionality
depends on how it manages the buffer pool...

Faloutsos/Pavlo CMU SCs 15-415/615 14

‘g CMU SCS

Buffer Pool Management

Is T1 allowed to
overwrite A even
though it hasn’t

Do we force T2’s changes to
be written to disk?

BE committed? o

R(A) -

W(A) BEGIN A=3|B=88| C=7s.
R(B) 9-?
W(B) %
COMMIT

»AabRT
v \

What happens when we jmory
need to rollback T1?

Faloutsos/Pavlo CMU SCS 15-415/615 15

CMU sCs

Buffer Pool — Steal Policy

e Whether the DBMS allows an uncommitted
txn to overwrite the most recent committed
value of an object in non-volatile storage.

— STEAL.: Is allowed.
— NO-STEAL.: Is not allowed.

Faloutsos/Pavlo CMU SCs 15-415/615 16

CMU sCS CMU sCs

Buffer Pool — Force Policy NO-STEAL + FORCE
Schedule (NO-STEAL means tha
t
» Whether the DBMS ensures that all updates T T2 onanges gic':}srl\(nget.e

made by a txn are reflected on non-volatile #Ef,ﬁf" (BU%«/ Q

storage before the txn is allowed to commit: W(A) R e s

BEGIN

fed

— FORCE: Is enforced. rRe) | | — — [1A=1]p=s¢|c=7
— NO-FORCE: Is not enforced. comprr __
*AB:ORT Disk
. . . FORCE means that T2
» Force writes makes it easier to recover but s rivial t be written
results in poor runtime performance. Now it's iWial o his point.

Faloutsos/Pavlo CMU SCS 15-415/615 17 Faloutsos/Pavlo CMU SCs 15-415/615 18

‘g CMU SCS g CMU SCS

NO-STEAL + FORCE Today’s Class

 This approach is the easiest to implement:

— Never have to undo changes of an aborted txn
because the changes were not written to disk.

— Never have to redo changes of a committed txn
because all the changes are guaranteed to be
written to disk at commit time.

o But this will be slow...
e What if txn modifies the entire database?

Write-Ahead Log
Checkpoints
Logging Schemes
Recovery Protocol
Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615 19 Faloutsos/Pavlo CMU SCs 15-415/615 20

g CMU SCS

Write-Ahead Log

» Record the changes made to the database in a
log before the change is made.

— Assume that the log is on stable storage.

— Log contains sufficient information to perform
the necessary undo and redo actions to restore
the database after a crash.

o Buffer Pool; STEAL + NO-FORCE

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU sCs

Write-Ahead Log Protocol

 All log records pertaining to an updated
page are written to non-volatile storage
before the page itself is allowed to be over-
written in non-volatile storage.

» A txn is not considered committed until all
its log records have been written to stable
storage.

Faloutsos/Pavlo CMU SCs 15-415/615 22

CMU sCSs

Write-Ahead Log Protocol

* Log record format:
— <txnld, objectId, beforeValue, afterValue>

— Each transaction writes a log record first, before
doing the change.

— Write a <BEGIN> record to mark txn starting point.

* When a txn finishes, the DBMS wiill:
— Write a <COMMIT> record on the log

— Make sure that all log records are flushed before
it returns an acknowledgement to application.

Faloutsos/Pavlo CMU SCS 15-415/615 23

CMU sCs

Write-Ahead Log — Example

Objectld N » Before Value
Txnld § b After Value
<T1 commit> \ -
CRASH]! e
N \\
4 N\
Buffer Pool A=99 | B=5
The result is deemed g8 | Bo10 Non-Volatile
safe to return to app. Storage
. J

Faloutsos/Pavlo VO I atl Ie Sto rage 24

CMU sCS

WAL - Implementation Details

» When should we write log entries to disk?
— When the transaction commits.

— Can use group commit to batch multiple log
flushes together to amortize overhead.

* When should we write dirty records to disk?
— Every time the txn executes an update?
— Once when the txn commits?

Faloutsos/Pavlo CMU SCS 15-415/615 25

jﬁ!f cMU scs
WAL — Deferred Updates

 Observation: If we prevent the DBMS from
writing dirty records to disk until the txn
commits, then we don’t need to store their
original values.

4)

WAL

<T1 begin>
<T1, A, 99, 88>
<T1, B, X, 10>
<T1 commit>

Faloutsos/Pavlo CMU SCs 15-415/615 26

CMU sCSs

WAL — Deferred Updates

* Observation: If we prevent the DBMS from
writing dirty records to disk until the txn
commits, then we don’t need to store their

Replay the log and
redo each update.

Simply ignore all of
T1’s updates.

<T1 begin>
<T1, A, 88>
<T1, B, 10>

<T1 begin>
<T1, A, 88>
<T1, B, 10>
CRASH!

<T1 commit>
CRASH!

Faloutsos/Pavlo CMU SCS 15-415/615 27

CMU sCs

WAL — Deferred Updates

» This won’t work if the change set of a txn is
larger than the amount of memory available.

— Example: Update all salaries by 5%

* The DBMS cannot undo changes for an
aborted txn if it doesn’t have the original
values in the log.

* We need to use the STEAL policy.

Faloutsos/Pavlo CMU SCs 15-415/615 28

CMU sCS

WAL — Buffer Pool Policies

Undo + Redo
NO-S

N

Slowest

NO-STEAL STEAL

NO-FORCE - Fastest NO-FORCE -

FORCE | S|lowest -

FORCE/FaSteSt -
Runtime [no undo + |Recovery
Performance| NoRedo Jerformance

Almost every DBMS uses NO-FORCE + STEAL

Faloutsos/Pavlo CMU SCS 15-415/615 29

% cMU scs ,
Today’s Class

Checkpoints
Logging Schemes
Recovery Protocol
Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615

30

g cMu scs
Checkpoints

» The WAL will grow forever.

 After a crash, the DBMS has to replay the
entire log which will take a long time.

» The DBMS periodically takes a checkpoint
where it flushes all buffers out to disk.

Faloutsos/Pavlo CMU SCS 15-415/615 31

g cMU scs
Checkpoints

» Output onto stable storage all log records
currently residing in main memory.

 QOutput to the disk all modified blocks.

 \Write a <CHECKPOINT> entry to the log and
flush to stable storage.

Faloutsos/Pavlo CMU SCS 15-415/615

32

g CMU SCS

Checkpoints

] . Any txn that committed before
the checkpoint is ignored (T1).

e T2 + T3 did not commit before
the last checkpoint.

— Need to redo T2 because it
committed after checkpoint.

— Need to undo T3 because it did
not commit before the crash.

Faloutsos/Pavlo CMU SCS 15-415/615 33

CMU sCs

Checkpoints — Challenges

» We have to stall all txns when take a
checkpoint to ensure a consistent snapshot.

 Scanning the log to find uncommitted can
take a long time.

» Not obvious how often the DBMS should
take a checkpoint.

Faloutsos/Pavlo CMU SCs 15-415/615 34

CMU sCSs

Checkpoints — Frequency

» Checkpointing too often causes the runtime
performance to degrade.
— System spends too much time flushing buffers.
» But waiting a long time is just as bad:
— The checkpoint will be large and slow.
— Makes recovery time much longer.

Faloutsos/Pavlo CMU SCS 15-415/615 35

g cMU scs ’
Today’s Class

» Logging Schemes
* Recovery Protocol
» Shadow Paging

Faloutsos/Pavlo CMU SCs 15-415/615 36

g cMu scs -
Logging Schemes

» Physical Logging: Record the changes
made to a specific location in the database.

— Example: Position of a record in a page.
 Logical Logging: Record the high-level
operations executed by txns.

— Example: The UPDATE, DELETE, and INSERT
queries invoked by a txn.

Faloutsos/Pavlo CMU SCS 15-415/615 37

CMU sCs

Physical vs. Logical Logging

 Logical logging requires less data written in
each log record than physical logging.

« Difficult to implement recovery with logical
logging if you have concurrent txns.

— Hard to determine which parts of the database
may have been modified by a query before crash.

— Also takes longer to recover because you must
re-execute every txn all over again.

Faloutsos/Pavlo CMU SCs 15-415/615 38

g cMu scs
Physiological Logging

» Hybrid approach where log records target a
single page but do not specify data
organization of the page.

 This is the most popular approach.

Faloutsos/Pavlo CMU SCS 15-415/615 39

g CMU SCS

Logging Schemes
INSERT INTO X VALUES(1,2,3);
Physical Logical Physiological
<T1, <T1, <T1,
Table=X, “INSERT INTO X Table=X,
Page=99, VALUES(1,2,3)"> Page=99,
Offset=4, Record=(1,2,3)>
Record=(1,2,3)>
<T1,
<T1, Index=X_ PKEY,
Index=X PKEY, IndexPage=45,
Page=45, Key=(1,Recordl)>
0ffset=9,
Key=(1,Recordlza7 £;7 p
Faloutsos/Pavlo CMU SCS 15-415/615 40

g cMu scs ,
Today’s Class

* Recovery Protocol
» Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615

41

‘g CMU SCS

Crash Recovery

» Recovery algorithms are techniques to
ensure database consistency, transaction
atomicity and durability despite failures.

» Recovery algorithms have two parts:

— Actions during normal txn processing to ensure
that the DBMS can recover from a failure.

— Actions after a failure to recover the database to
a state that ensures atomicity, consistency, and
durability.

Faloutsos/Pavlo CMU SCs 15-415/615 42

g cMu scs
Today's Class — ARIES

* Algorithms for Recovery and Isolation
Exploiting Semantics
— Write-ahead Logging
— Repeating History during Redo
— Logging Changes during Undo

Faloutsos/Pavlo CMU SCS 15-415/615

43

g CMU sCs
ARIES

» Developed at IBM during the early 1990s.
» Considered the “gold standard” in database
crash recovery.
— Implemented in DB2.

— Everybody else more or less
implements a variant of it.

C. Mohan
IBM Fellow

Faloutsos/Pavlo CMU SCs 15-415/615 44

CMU sCS

ARIES — Main Ideas

* Write-Ahead Logging:

— Any change is recorded in log on stable storage
before the database change is written to disk.

» Repeating History During Redo:
— On restart, retrace actions and restore database
to exact state before crash.
* Logging Changes During Undo:

— Record undo actions to log to ensure action is
not repeated in the event of repeated failures.

Faloutsos/Pavlo CMU SCS 15-415/615 46

CMU sCs

ARIES — Main Ideas

» Write Ahead Logging
— Fast, during normal operation

— Least interference with OS (i.e., STEAL, NO
FORCE)

 Fast (fuzzy) checkpoints
* On Recovery:

— Redo everything.

— Undo uncommitted txns.

Faloutsos/Pavlo CMU SCs 15-415/615 47

CMU sCSs

ARIES - Recovery Phases

» Analysis: Read the WAL to identify dirty
pages in the buffer pool and active txns at
the time of the crash.

» Redo: Repeat all actions starting from an
appropriate point in the log.

e Undo: Reverse the actions of txns that did
not commit before the crash.

Faloutsos/Pavlo CMU SCS 15-415/615 48

CMU sCs

ARIES - Overview

Oldestlog | « Start from last checkpoint found
record of b o+ A via Master Record.
« Three phases.
recordin dirg | - — Analysis - Figure out which
page ta/g'e after txns committed or failed since
nalysis .
checkpoint.
— Redo all actions (repeat
Last checkpoint -.- history)
l v — Undo effects of failed txns.
CRASH! —
ARU

49

g cMu scs N % cMU scs
Additional Crash Issues Today’s Class

» What happens if system crashes during the
Analysis Phase? During the Redo Phase?

* How do you limit the amount of work in the
Redo Phase?
— Flush asynchronously in the background.

* How do you limit the amount of work in the
Undo Phase?
— Avoid long-running txns.

» Shadow Paging

Faloutsos/Pavlo CMU SCS 15-415/615 50 Faloutsos/Pavlo CMU SCs 15-415/615 51

‘g CMU SCS g CMU SCS

Shadow Paging Shadow Paging
» Maintain two separate copies of the » Database is a tree whose root is a single
database (master, shadow) disk block.
» Updates are only made in the shadow copy. » There are two copies of the tree, the master
« When a txn commits, atomically switch the and shadow
shadow to become the new master. — The root points to the master copy.

Buffer Pool: NO-STEAL + EFORCE — Updates are applied to the shadow copy.

Portions courtesy of the great Phil Bernstein
Faloutsos/Pavlo CMU SCS 15-415/615 52 Faloutsos/Pavlo CMU SCS 15-415/615 53

g CMU SCS

Shadow Paging — Example

.)
f Memory (Non-Volatile Storage
1 /'_ﬂ |
2 | |
3 —_
: E—— |
Master —>| |
Page Table
DB Root
Pages on Disk
\- J

Faloutsos/Pavlo CMU SCS 15-415/615 54

Vg cMU scs
Shadow Paging

 To install the updates, overwrite the root so
it points to the shadow, thereby swapping
the master and shadow:

— Before overwriting the root, none of the
transaction’s updates are part of the disk-
resident database

— After overwriting the root, all of the
transaction’s updates are part of the disk-
resident database.

Portions courtesy of the great Phil Bernstein

Faloutsos/Pavlo CMU SCs 15-415/615 55

CMU sCSs

Shadow Paging — Example

Read-only txns access
the current master.

()

(Non-Volatile Storage\

: - X]

25] |

4

Master >->| X l

~ . _ Page Table —>1 X |

DB Ro ~

e~ —| |

g —] |
J < o~ |

4 w T ay

Shadow S

il S 1‘ Pages on Disk

/

Page Table)
~ /

[

Active modifying txn)
updates shadow pages. | cvu scs1s-41sieis 56

CMU sCs

Shadow Paging — Undo/Redo

» Supporting rollbacks and recovery is easy.

e Undo:

— Simply remove the shadow pages. Leave the
master and the DB root pointer alone.

* Redo:
— Not needed at all.

Faloutsos/Pavlo CMU SCs 15-415/615 57

CMU sCS

Shadow Paging — Advantages

* No overhead of writing log records.
* Recovery is trivial.

Faloutsos/Pavlo CMU SCS 15-415/615 58

CMU sCs

Shadow Paging — Disadvantages

» Copying the entire page table is expensive:
— Use a page table structured like a B+tree
— No need to copy entire tree, only need to copy

paths in the tree that lead to updated leaf nodes

o Commit overhead is high:
— Flush every updated page, page table, & root.
— Data gets fragmented.
— Need garbage collection.

Faloutsos/Pavlo CMU SCS 15-415/615

59

‘g CMU SCS

Summary

» Write-Ahead Log to handle loss of volatile
storage.

» Use incremental updates (i.e., STEAL, NO-
FORCE) with checkpoints.

* On recovery: undo uncommitted txns + redo
committed txns.

Faloutsos/Pavlo CMU SCS 15-415/615 60

g CMU SCS

Conclusion

» Recovery is really hard.

 Be thankful that you don’t have to write it
yourself.

Faloutsos/Pavlo CMU SCS 15-415/615

61

