
CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science

15-415/615 - DB Applications

C. Faloutsos – A. Pavlo
Lecture#18: Physical Database Design

CMU SCS

Administrivia

• HW6 is due right now.
• HW7 is out today

– Phase 1: Wed Nov 11th
– Phase 2: Mon Nov 30th

• Recitations (WEH 5302):
– Tue Nov 10th
– Tue Nov 17th

Faloutsos/Pavlo CMU SCS 15-415/615 2

CMU SCS

HW7: CMU “YikYak”

Faloutsos/Pavlo CMU SCS 15-415/615 3

• PHP Web Application
• Postgres Database
• Phase 1: Design Spec
• Phase 2: Implementation

CMU SCS

Last Class

• Decomposition
– Lossless
– Dependency Preserving

• Normal Forms
– 3NF
– BCNF

Faloutsos/Pavlo CMU SCS 15-415/615 4

CMU SCS

Today’s Class

• Introduction
• Index Selection
• Denormalization
• Decomposition
• Partitioning
• Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615 5

CMU SCS

Introduction

• After ER design, schema refinement, and
the view definitions, we have a conceptual
and external schema for our database.

• The next step is to create the physical
design of the database.

Faloutsos/Pavlo CMU SCS 15-415/615 6

CMU SCS

Physical Database Design

• Physical design is tightly linked to query
optimization
– Query optimization is usually a “top down”

concept.
– But in this lecture we’ll discuss this from the

“bottom up”

Faloutsos/Pavlo CMU SCS 15-415/615 7

CMU SCS

Physical Database Design

• It is important to understand the
application’s workload:
– What kind of queries/updates does it execute?
– How fast is the database growing?
– What is the desired performance metric?

Faloutsos/Pavlo CMU SCS 15-415/615 8

CMU SCS

Understanding Queries

• For each query in the workload:
– Which relations does it access?
– Which attributes are retrieved?
– Which attributes are involved in selection/join

conditions?
– How selective are these conditions likely to be?

Faloutsos/Pavlo CMU SCS 15-415/615 9

CMU SCS

Understanding Updates

• For each update in the workload:
– Which attributes are involved in predicates?
– How selective are these conditions likely to be?
– What types of update operations and what

attributes do they affect?
– How often are records inserted/updated/deleted?

Faloutsos/Pavlo CMU SCS 15-415/615 10

CMU SCS

Consequences

• Changing a database’s design does not
magically make every query run faster.
– May require you to modify your queries and/or

application logic.

• APIs hide implementation details and can
help prevent upstream apps from breaking
when things change.

Faloutsos/Pavlo CMU SCS 15-415/615 11

CMU SCS

General DBA Advice

• Modifying the physical design of a
database is expensive.

• DBA’s usually do this when the
application demand is low
– Typically Sunday mornings.
– May have to do it whenever the application

changes.

Faloutsos/Pavlo CMU SCS 15-415/615 12

CMU SCS

Today’s Class

• Introduction
• Index Selection
• Denormalization
• Decomposition
• Partitioning
• Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615 13

CMU SCS

Index Selection

• Which relations should have indexes?
• What attributes(s) or expressions should be

the search key?
• What order to use for attributes in index?
• How many indexes should we create?
• For each index, what kind of an index

should it be?

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU SCS

Example #1

Faloutsos/Pavlo CMU SCS 15-415/615 15

CREATE TABLE users (
 userID INT,
 servID VARCHAR,
 data VARCHAR,
 updated DATETIME,
 PRIMARY KEY (userId)
);

CREATE TABLE locations (
 locationID INT,
 servID VARCHAR,
 coordX FLOAT,
 coordY FLOAT
);

Get the location coordinates of a service
for any user with an id greater than some value
and whose record was updated on a Tuesday.

SELECT U.*, L.coordX, L.coordY
 FROM users AS U INNER JOIN locations AS L
 ON (U.servID = L.servID)
 WHERE U.userID > $1
 AND EXTRACT(dow FROM U.updated) = 2;

CMU SCS

Example #1: Join Clause

• Examine the attributes in the join clause
– Is there an index?
– What is the cardinality of the attributes?

Faloutsos/Pavlo CMU SCS 15-415/615 16

SELECT U.*, L.coordX, L.coordY
 FROM users AS U INNER JOIN locations AS L
 ON (U.servID = L.servID)
 WHERE U.userID > $1
 AND EXTRACT(dow FROM U.updated) = 2;

CMU SCS

Example #1: Where Clause

• Examine the attributes in the where clause
– Is there an index?
– How are they be accessed?

Faloutsos/Pavlo CMU SCS 15-415/615 17

SELECT U.*, L.coordX, L.coordY
 FROM users AS U INNER JOIN locations AS L
 ON (U.servID = L.servID)
 WHERE U.userID > $1
 AND EXTRACT(dow FROM U.updated) = 2;

CMU SCS

Example #1: Output Clause

• Examine the query’s output clause
– What attributes from what tables are needed?

Faloutsos/Pavlo CMU SCS 15-415/615 18

SELECT U.*, L.coordX, L.coordY
 FROM users AS U INNER JOIN locations AS L
 ON (U.servID = L.servID)
 WHERE U.userID > $1
 AND EXTRACT(dow FROM U.updated) = 2;

CMU SCS

Example #1: Summary

• Join: U.servID, L.servID
• Where: U.userID, U.updated
• Output: U.userID, U.servID, U.data,
U.updated, L.coordX, L.coordY

Faloutsos/Pavlo CMU SCS 15-415/615 19

SELECT U.*, L.coordX, L.coordY
 FROM users AS U INNER JOIN locations AS L
 ON (U.servID = L.servID)
 WHERE U.userID > $1
 AND EXTRACT(dow FROM U.updated) = 2;

CMU SCS

Index Selection

• We already have an index on U.userID.
– Why?

• What if we created separate indexes for
U.servID and L.servID?

Faloutsos/Pavlo CMU SCS 15-415/615 20

CREATE INDEX idx_u_servID ON users (servID);

CREATE INDEX idx_l_servID ON locations (servID);

CMU SCS

Index Selection (2)

• We still have to look up U.updated.
• What if we created another index?
• This doesn’t help our query. Why?

Faloutsos/Pavlo CMU SCS 15-415/615 21

CREATE INDEX idx_u_servID ON users (servID);

CREATE INDEX idx_l_servID ON locations (servID);

CREATE INDEX idx_u_updated ON users (updated); CREATE INDEX idx_u_updated ON users (
 EXTRACT(dow FROM updated));

SELECT U.*, L.coordX, L.coordY
 FROM users AS U INNER JOIN locations AS L
 ON (U.servID = L.servID)
 WHERE U.userID > $1
 AND EXTRACT(dow FROM U.updated) = 2;

CMU SCS

Index Selection (3)

• The query outputs L.coordX and L.coordX.
• This means that we have to fetch the

location record.
• We can create a covering index.

Faloutsos/Pavlo CMU SCS 15-415/615 22

CREATE INDEX idx_u_servID ON users (servID);

CREATE INDEX idx_l_servID ON locations (servID);

CREATE INDEX idx_u_updated ON users (
 EXTRACT(dow FROM updated));

CREATE INDEX idx_l_servID ON locations (
 servID, coordX, coordY);

CREATE INDEX idx_l_servID ON locations (servID)
 INCLUDE (coordX, coordY);

Only MSSQL

CMU SCS

Index Selection (4)

• Can we do any better?
• Is the index U.servID necessary?
• Create a partial index

Faloutsos/Pavlo CMU SCS 15-415/615 23

CREATE INDEX idx_u_servID ON users (servID);

CREATE INDEX idx_u_updated ON users (
 EXTRACT(dow FROM updated));

CREATE INDEX idx_l_servID ON locations (
 servID, coordX, coordY);

CREATE INDEX idx_u_servID ON users (servID)
 WHERE EXTRACT(dow FROM updated) = 2;

Repeat for the
other six days of

the week!

CMU SCS

Index Selection (5)

• Should we make the index on users a
covering index?
– What if U.data is large?
– Should userID come before servID?
– Do we still need the primary key index?

Faloutsos/Pavlo CMU SCS 15-415/615 24

CREATE INDEX idx_u_everything ON users
 (servID, userID, data)
 WHERE EXTRACT(dow FROM updated) = 2;

CREATE INDEX idx_u_everything ON users
 (servID, userID)
 WHERE EXTRACT(dow FROM updated) = 2;

CREATE INDEX idx_u_everything ON users
 (userID, servID)
 WHERE EXTRACT(dow FROM updated) = 2;

CMU SCS

Other Index Decisions

• What type of index to use?
– B+Tree, Hash table, Bitmap, R-Tree, Full Text

Faloutsos/Pavlo CMU SCS 15-415/615 25

CMU SCS

Today’s Class

• Introduction
• Index Selection
• Denormalization
• Decomposition
• Partitioning
• Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615 26

CMU SCS

Denormalization

• Joins can be expensive, so it might be
better to denormalize two tables back into
one.

• This is goes against all of the BCNF
goodness that we talked about it.
– But we have bills to pay, so this is an example

where reality conflicts with the theory…

Faloutsos/Pavlo CMU SCS 15-415/615 27

CMU SCS

Game Example #1

Faloutsos/Pavlo CMU SCS 15-415/615 28

CREATE TABLE players (
 playerID INT PRIMARY KEY,
 ⋮
);

CREATE TABLE prefs (
 playerID INT PRIMARY KEY
 REFERENCES player (playerID),
 data VARBINARY
);

CMU SCS

Game Example #1

• Get player preferences (1:1)

Faloutsos/Pavlo CMU SCS 15-415/615 29

SELECT P1.*, P2.*
 FROM players AS P1 INNER JOIN prefs AS P2
 ON P1.playerID = P2.playerID
 WHERE P1.playerID = $1

CMU SCS

Game Example #1

Faloutsos/Pavlo CMU SCS 15-415/615 30

CREATE TABLE players (
 playerID INT PRIMARY KEY,
 ⋮
);

CREATE TABLE prefs (
 playerID INT PRIMARY KEY
 REFERENCES player (playerID),
 data VARBINARY
);

CREATE TABLE players (
 playerID INT PRIMARY KEY,
 data VARBINARY,
 ⋮
);

SELECT P1.* FROM players AS P1
 WHERE P1.playerID = $1

Denormalize into
parent table

CMU SCS

Denormalization (1:n)

• It’s harder to denormalize tables with a 1:n
relationship.
– Why?

• Example: There are multiple “game”

instances in our application that players
participate in. We need to keep track of
each player’s score per game.

Faloutsos/Pavlo CMU SCS 15-415/615 31

CMU SCS

Game Example #2

Faloutsos/Pavlo CMU SCS 15-415/615 32

CREATE TABLE players (
 playerID INT PRIMARY KEY,
 ⋮
);

CREATE TABLE games (
 gameID INT PRIMARY KEY,
 ⋮
);

CREATE TABLE scores (
 gameID INT REFERENCES games (gameID),
 playerID INT REFERENCES players (playerID),
 score INT,
 PRIMARY KEY (gameID, playerID)
);

CMU SCS

Game Example #2

• Get the list of playerIDs for a particular
game sorted by their score.

Faloutsos/Pavlo CMU SCS 15-415/615 33

SELECT S.gameID, S.score, G.*, P.*
 FROM players AS P, games AS G, scores AS S
 WHERE G.gameID = $1
 AND G.gameID = S.gameID
 AND S.playerID = P.playerID
 ORDER BY S.score DESC

CMU SCS

Game Example #2

Faloutsos/Pavlo CMU SCS 15-415/615 34

CREATE TABLE players (
 playerID INT PRIMARY KEY,
 ⋮
);

CREATE TABLE games (
 gameID INT PRIMARY KEY,
 ⋮
);

CREATE TABLE scores (
 gameID INT REFERENCES games (gameID),
 playerID INT REFERENCES players (playerID),
 score INT,
 PRIMARY KEY (gameID, playerID)
);

CREATE TABLE games (
 gameID INT PRIMARY KEY,
 playerID1 INT REFERENCES players (playerID),
 score1 INT,
 playerID2 INT REFERENCES players (playerID),
 score2 INT,
 playerID3 INT REFERENCES players (playerID),
 score3 INT,
 ⋮
);

CMU SCS

Arrays

• Denormalize 1:n relationships by storing
multiple values in a single attribute.
– Oracle: VARRAY
– Postgres: ARRAY
– DB2/MSSQL/SQLite: UDTs
– MySQL: Fake it with VARBINARY

• Requires you to modify your application to
manage these arrays.
– DBMS will not enforce foreign key constraints.

Faloutsos/Pavlo CMU SCS 15-415/615 35

CMU SCS

CREATE TABLE games (
 gameID INT PRIMARY KEY,
 playerIDs INT ARRAY,
 scores INT ARRAY,
 ⋮
);

Game Example #2

36

CREATE TABLE players (
 playerID INT PRIMARY KEY,
 ⋮
);

CREATE TABLE games (
 gameID INT PRIMARY KEY,
 playerIDs INT[],
 scores INT[],
 ⋮
);

INSERT INTO games VALUES (
 1, --gameId
 '{4, 3, 1, 5, 2}', --playerIDs
 '{900, 800, 700, 600, 500}' --scores
);

SELECT P.*, G.*
 G.scores[idx(G.playerIDs, P.playerID)] AS score
 FROM players AS P JOIN games AS G
 ON P.playerID = ANY(G.playerIDs)
 WHERE G.gameID = $1
 ORDER BY score DESC;

Not a standard SQL function
See: https://wiki.postgresql.org/wiki/Array_Index

CMU SCS

Game Example #2

Faloutsos/Pavlo CMU SCS 15-415/615 37

CREATE TABLE players (
 playerID INT PRIMARY KEY,
 ⋮
);

CREATE TABLE games (
 gameID INT PRIMARY KEY,
 playerScores INT[][], -- (playerId, score)
 ⋮
);

No easy way to query this in pure SQL…

CMU SCS

Today’s Class

• Introduction
• Index Selection
• Denormalization
• Decomposition
• Partitioning
• Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615 38

CMU SCS

Decomposition

• Split physical tables up to reduce the
overhead of reading data during query
execution.
– Vertical: Break off attributes from a table.
– Horizontal: Split data from a single table into

multiple tables.

• This is an application of normalization.

Faloutsos/Pavlo CMU SCS 15-415/615 39

CMU SCS

Wikipedia Example

Faloutsos/Pavlo CMU SCS 15-415/615 40

CREATE TABLE pages (
 pageID INT PRIMARY KEY,
 title VARCHAR UNIQUE,
 latest INT REFERENCES revisions (revID),
 updated DATETIME
);

CREATE TABLE revisions (
 revID INT PRIMARY KEY,
 pageID INT REFERENCES pages (pageID),
 content TEXT,
 updated DATETIME
);

CMU SCS

Wikipedia Example

• Load latest revision for page

• Get all revision history for page

Faloutsos/Pavlo CMU SCS 15-415/615 41

SELECT P.*, R.*
 FROM pages AS P INNER JOIN revisions AS R
 ON P.latest = R.revID
 WHERE P.pageID = $1

SELECT R.revID, R.updated, ...
 FROM revisions AS R
 WHERE R.pageID = $1

CMU SCS

Wikipedia Example

Faloutsos/Pavlo CMU SCS 15-415/615 42

CREATE TABLE pages (
 pageID INT PRIMARY KEY,
 title VARCHAR UNIQUE,
 latest INT REFERENCES revisions (revID),
 updated DATETIME
);

CREATE TABLE revisions (
 revID INT PRIMARY KEY,
 pageID INT REFERENCES pages (pageID),
 content TEXT,
 updated DATETIME
);

Avg. Size of Wikipedia
Revision: ~16KB

CMU SCS

Vertical Decomposition

• Split out large attributes into a separate
table (aka “normalize”).

• Trade-offs:
– Some queries will have to perform a join to get

the data that they need.
– But other queries will read less data.

Faloutsos/Pavlo CMU SCS 15-415/615 43

CMU SCS

Vertical Decomposition

Faloutsos/Pavlo CMU SCS 15-415/615 44

CREATE TABLE revData (
 revID INT REFERENCES revisions (revID),
 content TEXT
);

CREATE TABLE pages (
 pageID INT PRIMARY KEY,
 title VARCHAR UNIQUE,
 latest INT REFERENCES revisions (revID),
 updated DATETIME
);

CREATE TABLE revisions (
 revID INT PRIMARY KEY,
 pageID INT REFERENCES pages (pageID),
 content TEXT,
 updated DATETIME
);

CREATE TABLE revisions (
 revID INT PRIMARY KEY,
 pageID INT REFERENCES pages (pageID),
 updated DATETIME
);

SELECT P.*, R.*, RD.*
 FROM pages AS P, revisions AS R,
 revData AS RD
 WHERE P.pageID = $1
 AND P.latest = R.revID
 AND R.revID = RD.revID

CMU SCS

Horizontal Decomposition

• Replace a single table with multiple tables
where tuples are assigned to a table based
on some condition.

• Can mask the changes to the application
using views and triggers.

Faloutsos/Pavlo CMU SCS 15-415/615 45

CMU SCS

Horizontal Decomposition

Faloutsos/Pavlo CMU SCS 15-415/615 46

CREATE TABLE revDataNew (
 revID INT REFERENCES revisions (revID),
 content TEXT
);

CREATE TABLE revisions (
 revID INT PRIMARY KEY,
 pageID INT REFERENCES pages (pageID),
 updated DATETIME
);

CREATE TABLE revDataOld (
 revID INT REFERENCES revisions (revID),
 content TEXT
);

All new revisions are first
added to this table.

Then a revision is moved
to this table when it is no

longer the latest.

CREATE VIEW revData AS
 (SELECT * FROM revDataNew)
 UNION
 (SELECT * FROM revDataOld)

SELECT R.revID, R.updated, ...
 FROM revisions AS R
 WHERE R.pageID = $1

CMU SCS

Today’s Class

• Introduction
• Index Selection
• Denormalization
• Decomposition
• Partitioning
• Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615 47

CMU SCS

Partitioning

• Split single logical table into disjoint
physical segments that are stored/managed
separately.

• Ideally partitioning is transparent to the
application.
– The application accesses logical tables and

doesn’t care how things are stored.
– Not always true.

Faloutsos/Pavlo CMU SCS 15-415/615 48

CMU SCS

Vertical Partitioning

• Store a table’s attributes in a separate
location (e.g., file, disk volume).

• Have to store tuple information to
reconstruct the original record.

49

Tuple#1

Tuple#2

Tuple#3

Tuple#4

revID pageID updated

revID pageID updated

revID pageID updated

revID pageID updated

content ...

content ...

content ...

content ...

Tuple#1

Tuple#2

Tuple#3

Tuple#4

Partition #1 Partition #2

CMU SCS

Horizontal Partitioning

• Divide the tuples of a table up into disjoint
segments based on some partitioning key.
– Hash Partitioning
– Range Partitioning
– Predicate Partitioning

• We will cover this more in depth when we
talk about distributed databases.

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU SCS

Horizontal Partitioning (Postgres)

51

CREATE TABLE revisions (
 revID INT PRIMARY KEY,
 pageID INT REFERENCES pages (pageID),
 updated DATETIME
);

CREATE TABLE revDataNew (
 revID INT REFERENCES revisions (revID),
 content TEXT
);

CREATE TABLE revDataOld (
 revID INT REFERENCES revisions (revID),
 content TEXT
);

CREATE TABLE revData (
 revID INT REFERENCES revisions (revID),
 content TEXT,
 isLatest BOOLEAN DEFAULT true
);

CREATE TABLE revDataNew (
 CHECK (isLatest = true)
) INHERITS revData;

CREATE TABLE revDataOld (
 CHECK (isLatest = false)
) INHERITS revData;

Still need triggers to
move data between
partitions on update.

CMU SCS

Today’s Class

• Introduction
• Index Selection
• Denormalization
• Decomposition
• Partitioning
• Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615 52

CMU SCS

Caching

• Queries for content that does not change
often slow down the database.

• Use external cache to store objects.
– Memcached, Facebook Tao
– Application has to maintain consistency.

Faloutsos/Pavlo CMU SCS 15-415/615 53

CMU SCS

Auto-Tuning

• Vendors include tools that can help with
the physical design process:
– IBM DB2 Advisor
– Microsoft AutoAdmin
– Oracle SQL Tuning Advisor
– Random MySQL/Postgres tools

• Still a very manual process.
• We are working on something better…

Faloutsos/Pavlo CMU SCS 15-415/615 54

CMU SCS

Next Three Weeks

• Database System Internals
– Concurrency Control
– Logging & Recovery
– Distributed DBMSs
– Column Store DBMSs

Faloutsos/Pavlo CMU SCS 15-415/615 56

