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Administrivia

* HWG is due right now.

 HW?7 is out today
— Phase 1: Wed Nov 11t
— Phase 2: Mon Nov 30th
* Recitations (WEH 5302 ):
— Tue Nov 10t
— Tue Nov 17t
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PHP Web Application
Postgres Database

Phase 1: Design Spec
Phase 2: Implementation
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Last Class

e Decomposition

— Lossless

— Dependency Preserving
e Normal Forms

- 3NF

- BCNF
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Today’s Class

e Introduction

* Index Selection
* Denormalization
« Decomposition

* Partitioning

» Advanced Topics
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Introduction

» After ER design, schema refinement, and
the view definitions, we have a conceptual
and external schema for our database.

» The next step is to create the physical
design of the database.
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Physical Database Design

 Physical design is tightly linked to query
optimization
— Query optimization is usually a “top down”
concept.

— But in this lecture we’ll discuss this from the
“bottom up”
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Physical Database Design

e It is important to understand the
application’s workload:
— What kind of queries/updates does it execute?
— How fast is the database growing?
— What is the desired performance metric?
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Understanding Queries

 For each query in the workload:
— Which relations does it access?
— Which attributes are retrieved?

— Which attributes are involved in selection/join
conditions?

— How selective are these conditions likely to be?
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Understanding Updates

 For each update in the workload:
— Which attributes are involved in predicates?
— How selective are these conditions likely to be?

— What types of update operations and what
attributes do they affect?

— How often are records inserted/updated/deleted?
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Consequences

» Changing a database’s design does not
magically make every query run faster.

— May require you to modify your queries and/or
application logic.

» APIs hide implementation details and can
help prevent upstream apps from breaking
when things change.
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General DBA Advice

» Modifying the physical design of a
database is expensive.

« DBA’s usually do this when the
application demand is low
— Typically Sunday mornings.

— May have to do it whenever the application
changes.
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Today’s Class

Index Selection
Denormalization
Decomposition
Partitioning
Advanced Topics
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Index Selection

Which relations should have indexes?

What attributes(s) or expressions should be
the search key?

What order to use for attributes in index?
How many indexes should we create?

For each index, what kind of an index
should it be?
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Example #1

CREATE TABLE users (
userID INT,
servID VARCHAR,
data VARCHAR,
updated DATETIME,
PRIMARY KEY (userld) );

CREATE TABLE locations (
locationID INT,
servID VARCHAR,
coordX FLOAT,
coordY FLOAT

);

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L
ON (U.servID = L.servID)
WHERE U.userID > $1
AND EXTRACT (dow FROM U.updated) = 2;
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Example #1: Join Clause

)

» Examine the attributes in the join clause
— Is there an index?
— What is the cardinality of the attributes?

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L
0N|(U.ser!£D = L.servID)I
WHERE U.userID > $1
AND EXTRACT(dow FROM U.updated) = 2;
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CMU sCs CREATE TABLE users (

Example #1: Where Clause

data VARCHAR,
updated DATETIME,
PRIMARY KEY (userld)

o Examine the attributes in the where clause
— Is there an index?
— How are they be accessed?

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L

ON (U.servID = L. .servID)
WHERE |U.userID > $1 |
AND [EXTRACT (dow FROM U.updated) = 2; |
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CMU SCs CREATE TABLE users (

servID VARCHAR,
data VARCHAR,
updated DATETIME,

Example #1: Output Clause. ="

CREATE TABLE locations (
locationID INT,

» Examine the query’s output clause
— What attributes from what tables are needed?

SELECT|U.*||L.coordX‘ L.coordY|
FROM users AS U INNER JOIN locations AS L
ON (U.servID = L.servID)
WHERE U.userID > $1
AND EXTRACT(dow FROM U.updated) = 2;
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Example #1: Summary

e Join: U.servID, L.servID
e Where: U.userlID, U.updated

e Output: U.userID, U.servID, U.data,
U.updated, L.coordX, L.coordY

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L
ON (U.servID = L.servID)
WHERE U.userID > $1
AND EXTRACT (dow FROM U.updated) = 2;
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Index Selection

b

» We already have an index on U.userID.
— Why?

» What if we created separate indexes for
U.servIDand L.servID?

iCREATE INDEX idx u_servID ON users (servID);

iCREATE INDEX idx 1 servID ON locations (servID);?
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CMU sCs CREATE TABLE users (

Index Selection (2) |

data VARCHAR,
updated DATETIME,
PRIMARY KEY (userld)
)i

CREATE TABLE lncannns (
It D INT

» We still have to look up U.updated.
» What if we created another index?
* This doesn’t help our query. Why?

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L .
ON (U.servID = L.servID)
WHERE U.userID > $1 .
AND|EXTRACT dow FROM U. updated) = 2; | i

*CREATE INDEX idx u updated ON users (
! EXTRACT (dow FROM updated));
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CMU SCs CREATE TABLE users (

Index Selection (3) |

data VARCHAR,

updated nArEnﬂE,

PRIMARY KEY (userId)
)i

CREATE uus \ncanons (
location:

» The query outputs L.coordX and L. coordX

e This means that we have to fetch the
location record.

» We can create a covering index.

éCREATE INDEX idx u servID ON users (servID);

*CREATE INDEX idx 1 servID ON locations (
servID, coordX, coordY)

COEATE _TNDEV. _aAdv s _swadatad NAAM. _ucoce

CREATE INDEX idx 1 servID ON locatlons (servID)
INCLUDE (coordX, coordY);

CMU SCs 15| Only MSSQL 22

Faloutsos/Pavlo

g CMU SCS

Index Selection (4)

« Can we do any better?
e |s the index U.servID necessary?

Lo Repeat for the
 Create a partial index

other six days of

the week!

*CREATE INDEX idx u_servID ON users (servIDy)
WHERE EXTRACT(dow FROM updated) = 2;

CREATE INDEX 1dx Ll servID ON locations (
servID, coordX, coordY);

N users (
EXTRACT (dow FROM updated))) ;
CMU SCS 15-415/615 23

CREATE INDEX idx u_uj
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Index Selection (5)

» Should we make the index on users a
covering index?
— What if U.data is large?
— Should userID come before servID?
— Do we still need the primary key index?

CREATE INDEX idx u everything ON users
(userID, servID)
WHERE EXTRACT(dow FROM updated) = 2;
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Other Index Decisions

» What type of index to use?
— B+Tree, Hash table, Bitmap, R-Tree, Full Text
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Today’s Class

» Denormalization
» Decomposition

* Partitioning

» Advanced Topics
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Denormalization

« Joins can be expensive, so it might be
better to denormalize two tables back into
one.

 This is goes against all of the BCNF
goodness that we talked about it.

— But we have bills to pay, so this is an example
where reality conflicts with the theory...

Faloutsos/Pavlo CMU SCS 15-415/615 27

g CMU SCS

Game Example #1

CREATE TABLE players (
playerID INT PRIMARY KEY,

);

CREATE TABLE prefs (
playerID INT PRIMARY KEY
REFERENCES player (playerID),
data VARBINARY
);
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Game Example #1 Game Example #1

CREATE TABLE players (
o Get player preferences (1:1) glaye\;igBix;RsRIMARY KEY,
ata »

SELECT P1.*, P2.* ([)enonnaﬁzeinu)}

FROM players AS P1 INNER JOIN prefs AS P2 ): ' parent table
ON Pl.playerlID P2.playerID k_ﬁ :

WHERE Pl.playerID = $1 L CREATE._TABLE. nrefs.(
SELECT P1.* FROM players AS P1

WHERE Pl.playerID = $1

UaTa " VARDIINWAKRT

);
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Denormalization (1:n) Game Example #2
’ . . CREATE TABLE players (
e It’s harder to denormalize tables with a 1:n playerID INT PRIMARY KEY,
relationship. )i
— Why? CREATE TABLE games (
gameID INT PRIMARY KEY,
« Example: There are multiple “game” )i
instances in our application that players CREATE TABLE scores (
.. . gameID INT REFERENCES games (gamelD),
participate in. We need to keep track of playerID INT REFERENCES players (playerID),
y score INT,
each player’s score per game. PRIMARY KEY (gameID, playerID)

);

Faloutsos/Pavlo CMU SCS 15-415/615 31 Faloutsos/Pavlo CMU SCS 15-415/615 32




% cMu sCs
Game Example #2

» Get the list of playerlIDs for a particular
game sorted by their score.

SELECT S.gameID, S.score, G.*, P.*

FROM players AS P, games AS G, scores AS S
WHERE G.gamelID = $1

AND G.gameID = S.gamelD

AND S.playerID = P.playerID
ORDER BY S.score DESC
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Game Example #2

CREATE TABLE players (
playerID INT PRIMARY KEY,

);

CREATE TABLE games (

gameID INT PRIMARY KEY,

playerID1 INT REFERENCES players (playerlD),
scorel INT,

playerID2 INT REFERENCES players (playerID),
score2 INT,

playerID3 INT REFERENCES players (playerlD),
score3 INT,

):'
i
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Arrays

» Denormalize 1:n relationships by storing
multiple values in a single attribute.
— Oracle: VARRAY
— Postgres: ARRAY
— DB2/MSSQL/SQLite: UDTs
— MySQL.: Fake it with VARBINARY
» Requires you to modify your application to
manage these arrays.
— DBMS will not enforce foreign key constraints.
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Game Example #2

CREATE TABLE players (
playerID INT PRIMARY KEY,

);

CREATE TABLE games (
gameID INT PRIMARY KEY,
playerIDs INTI[],
scores INT[],

);.

SELECT P * G * /\See: https://wiki.postgresgl.org/wiki/Array_Index
|G.scores[idxfETEI;;;rIDs, P.plgxngD)] AS scorel
FROM avers AS P JOIN games AS G

ONJP.playerID = ANY(G.playerlIDs)

WHERE G.gamelID = $1
ORDER BY score DESC;

fNMaﬂmwmdSQLﬂmMMn}
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Game Example #2

CREATE TABLE players (
playerID INT PRIMARY KEY,

);

CREATE TABLE games (
gameID INT PRIMARY KEY,
playerScores INT[1[], -- (playerId, score)

);

No easy way to query this in pure SQL...
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Today’s Class

» Decomposition
* Partitioning
» Advanced Topics
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Decomposition

 Split physical tables up to reduce the
overhead of reading data during query
execution.
— Vertical: Break off attributes from a table.

— Horizontal: Split data from a single table into
multiple tables.

 This is an application of normalization.
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Wikipedia Example

CREATE TABLE pages (

pageID INT PRIMARY KEY,

TOUE
|latest INT REFERENCES revisions (revID)l-
update

);

CREATE TABLE revisions (

pageID INT REFERENCES pages (pagelD),
XT,
updated DATETIME
);
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Wikipedia Example

 Load latest revision for page

SELECT P.*, R.*
FROM pages AS
ON P.latest
WHERE P.pagelD

INNER JOIN revisions AS R
R.revID

$1

I 1 o

 Get all revision history for page

SELECT R.revID, R.updated,
FROM revisions AS R
WHERE R.pagelID = $1
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Wikipedia Example

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT REFERENCES revisions (revID),
updated DATETIME

) [ Avg. Size of Wikipedia

Revision: ~16KB

CREATE TABLE revV

INT PRI

\ A =4
content TEXT,

pages (pageID),
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Vertical Decomposition

 Split out large attributes into a separate
table (aka “normalize™).
 Trade-offs:

— Some queries will have to perform a join to get
the data that they need.

— But other queries will read less data.
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Vertical Decomposition

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT REFERENCES revisions (revID),
updated DATETIME
);

LREATE. _TARILE. croysi

SELECT P.*, R.*, RD.*
FROM pages AS P, revisions AS R,
revData AS RD
WHERE P.pagelD $1
AND P.latest R.revID
AND R.revID = RD.revID

| content TEXT |
) ;
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Horizontal Decomposition

» Replace a single table with multiple tables
where tuples are assigned to a table based
on some condition.

» Can mask the changes to the application
using views and triggers.
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Horizontal Decomposition

CREATE TABLE revisions (
revID INT PRIMARY KEY,
pageID INT REFERENCES pages (pagelD),

updated DATETIME
); added to this table.
%

All new revisions are firs

SELECT R.revID, R.updated,
FROM revisions AS R
WHERE R.pageID = $1

T TUTTOT J

_ vIiD),
to this tab
longet

CREATE VIEW revData AS
CRE (SELECT * FROM revDataNew)
UNION

(SELECT * FROM revDataOld)

);

Faloutsos/Pavlo
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Today’s Class

* Partitioning
» Advanced Topics
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Partitioning

 Split single logical table into disjoint
physical segments that are stored/managed
separately.

* |deally partitioning is transparent to the
application.

— The application accesses logical tables and
doesn’t care how things are stored.

— Not always true.
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Vertical Partitioning

 Store a table’s attributes in a separate
location (e.g., file, disk volume).

» Have to store tuple information to
reconstruct the original record.

Partition #1 " Partition #2

-
Tuple#l| revID pageID | updated corltent Tl}le#l >
=

Tuple#2| revID pageID | updated conment Tl}le#z >

w
Tuple#3| revID pageID | updated congent Tl}le#3 >
Tuple#4| revID pageID | updated cor\Eent Tl}le#4 >
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Horizontal Partitioning

* Divide the tuples of a table up into disjoint
segments based on some partitioning key.
— Hash Partitioning
— Range Partitioning
— Predicate Partitioning

» We will cover this more in depth when we
talk about distributed databases.
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Horizontal Partitioning (Postgres)

CREATE TABLE revisions (
revID INT PRIMARY KEY,
pageID INT REFERENCES pages (pagelD),
updated DATETIME

);

CREATE TABLE revData (
revID INT REFERENCES revisions (revID),

nt TEXT - ID),
IisLatest BOOLEAN DEFAULT true | Still need triggers to
)i move data between
partitions on update.
{ CREATE TABLE revData(‘( ’ ,
CREATE TABLE revDataNew ( S| CREATE TABLE revDataOld (
CHECK (isLatest = true) CHECK (isLatest = false)
) INHERITS revData; i) INHERITS revData;
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Today’s Class

» Advanced Topics
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Caching

 Queries for content that does not change
often slow down the database.

» Use external cache to store objects.
— Memcached, Facebook Tao
— Application has to maintain consistency.

Faloutsos/Pavlo CMU SCS 15-415/615

53

g CcMU sCs -
Auto-Tuning

 Vendors include tools that can help with
the physical design process:
— IBM DB2 Advisor
— Microsoft AutoAdmin
— Oracle SQL Tuning Advisor
— Random MySQL/Postgres tools

« Still a very manual process.
» We are working on something better...
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Next Three Weeks

» Database System Internals
— Concurrency Control
— Logging & Recovery
— Distributed DBMSs
— Column Store DBMSs
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