g CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#18: Physical Database Design

CMU SCs

Administrivia

* HWG is due right now.

 HW?7 is out today
— Phase 1: Wed Nov 11t
— Phase 2: Mon Nov 30th
* Recitations (WEH 5302):
— Tue Nov 10t
— Tue Nov 17t

Faloutsos/Pavlo CMU SCS 15-415/615

g oMU sCs
HW7: CMU *“YikYak”

A

i

H
L

PHP Web Application
Postgres Database

Phase 1: Design Spec
Phase 2: Implementation

Faloutsos/Pavlo CMU SCS 15-415/615 3

g CMU SCS

Last Class

e Decomposition

— Lossless

— Dependency Preserving
e Normal Forms

- 3NF

- BCNF

Faloutsos/Pavlo CMU SCS 15-415/615

g cMu sCs
Today’s Class

e Introduction

* Index Selection
* Denormalization
« Decomposition

* Partitioning

» Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615

g CMU SCS

Introduction

» After ER design, schema refinement, and
the view definitions, we have a conceptual
and external schema for our database.

» The next step is to create the physical
design of the database.

Faloutsos/Pavlo CMU SCS 15-415/615

CMU sCS

Physical Database Design

 Physical design is tightly linked to query
optimization
— Query optimization is usually a “top down”
concept.

— But in this lecture we’ll discuss this from the
“bottom up”

Faloutsos/Pavlo CMU SCS 15-415/615

CMU SCs

Physical Database Design

e It is important to understand the
application’s workload:
— What kind of queries/updates does it execute?
— How fast is the database growing?
— What is the desired performance metric?

Faloutsos/Pavlo CMU SCS 15-415/615

CMU sCs

Understanding Queries

 For each query in the workload:
— Which relations does it access?
— Which attributes are retrieved?

— Which attributes are involved in selection/join
conditions?

— How selective are these conditions likely to be?

Faloutsos/Pavlo CMU SCS 15-415/615 9

CMU SCs

Understanding Updates

 For each update in the workload:
— Which attributes are involved in predicates?
— How selective are these conditions likely to be?

— What types of update operations and what
attributes do they affect?

— How often are records inserted/updated/deleted?

Faloutsos/Pavlo CMU SCS 15-415/615 10

g CMU SCS

Consequences

» Changing a database’s design does not
magically make every query run faster.

— May require you to modify your queries and/or
application logic.

» APIs hide implementation details and can
help prevent upstream apps from breaking
when things change.

Faloutsos/Pavlo CMU SCS 15-415/615 11

g CMU SCS
General DBA Advice

» Modifying the physical design of a
database is expensive.

« DBA’s usually do this when the
application demand is low
— Typically Sunday mornings.

— May have to do it whenever the application
changes.

Faloutsos/Pavlo CMU SCS 15-415/615 12

% cMu sCs
Today’s Class

Index Selection
Denormalization
Decomposition
Partitioning
Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615

13

CMU SCs

Index Selection

Which relations should have indexes?

What attributes(s) or expressions should be
the search key?

What order to use for attributes in index?
How many indexes should we create?

For each index, what kind of an index
should it be?

Faloutsos/Pavlo CMU SCS 15-415/615 14

g CcMU sCS
Example #1

CREATE TABLE users (
userID INT,
servID VARCHAR,
data VARCHAR,
updated DATETIME,
PRIMARY KEY (userld));

CREATE TABLE locations (
locationID INT,
servID VARCHAR,
coordX FLOAT,
coordY FLOAT

);

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L
ON (U.servID = L.servID)
WHERE U.userID > $1
AND EXTRACT (dow FROM U.updated) = 2;

Faloutsos/Pavlo CMU SCS 15-415/615

15

g CMU SCS

Example #1: Join Clause

)

» Examine the attributes in the join clause
— Is there an index?
— What is the cardinality of the attributes?

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L
0N|(U.ser!£D = L.servID)I
WHERE U.userID > $1
AND EXTRACT(dow FROM U.updated) = 2;

Faloutsos/Pavlo CMU SCS 15-415/615 16

CMU sCs CREATE TABLE users (

Example #1: Where Clause

data VARCHAR,
updated DATETIME,
PRIMARY KEY (userld)

o Examine the attributes in the where clause
— Is there an index?
— How are they be accessed?

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L

ON (U.servID = L. .servID)
WHERE |U.userID > $1 |
AND [EXTRACT (dow FROM U.updated) = 2; |

CMU SCS 15-415/615 17

Faloutsos/Pavlo

CMU SCs CREATE TABLE users (

servID VARCHAR,
data VARCHAR,
updated DATETIME,

Example #1: Output Clause. ="

CREATE TABLE locations (
locationID INT,

» Examine the query’s output clause
— What attributes from what tables are needed?

SELECT|U.*||L.coordX‘ L.coordY|
FROM users AS U INNER JOIN locations AS L
ON (U.servID = L.servID)
WHERE U.userID > $1
AND EXTRACT(dow FROM U.updated) = 2;

Faloutsos/Pavlo CMU SCs 15-415/615 18

g CMU SCS

Example #1: Summary

e Join: U.servID, L.servID
e Where: U.userlID, U.updated

e Output: U.userID, U.servID, U.data,
U.updated, L.coordX, L.coordY

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L
ON (U.servID = L.servID)
WHERE U.userID > $1
AND EXTRACT (dow FROM U.updated) = 2;

Faloutsos/Pavlo CMU SCS 15-415/615 19

g CMU SCS

Index Selection

b

» We already have an index on U.userID.
— Why?

» What if we created separate indexes for
U.servIDand L.servID?

iCREATE INDEX idx u_servID ON users (servID);

iCREATE INDEX idx 1 servID ON locations (servID);?

Faloutsos/Pavlo CMU SCS 15-415/615 20

CMU sCs CREATE TABLE users (

Index Selection (2) |

data VARCHAR,
updated DATETIME,
PRIMARY KEY (userld)
)i

CREATE TABLE lncannns (
It D INT

» We still have to look up U.updated.
» What if we created another index?
* This doesn’t help our query. Why?

SELECT U.*, L.coordX, L.coordY
FROM users AS U INNER JOIN locations AS L .
ON (U.servID = L.servID)
WHERE U.userID > $1 .
AND|EXTRACT dow FROM U. updated) = 2; | i

*CREATE INDEX idx u updated ON users (
! EXTRACT (dow FROM updated));

Faloutsos/Pavlo CMU SCS 15-415/615 21

CMU SCs CREATE TABLE users (

Index Selection (3) |

data VARCHAR,

updated nArEnﬂE,

PRIMARY KEY (userId)
)i

CREATE uus \ncanons (
location:

» The query outputs L.coordX and L. coordX

e This means that we have to fetch the
location record.

» We can create a covering index.

éCREATE INDEX idx u servID ON users (servID);

*CREATE INDEX idx 1 servID ON locations (
servID, coordX, coordY)

COEATE _TNDEV. _aAdv s _swadatad NAAM. _ucoce

CREATE INDEX idx 1 servID ON locatlons (servID)
INCLUDE (coordX, coordY);

CMU SCs 15| Only MSSQL 22

Faloutsos/Pavlo

g CMU SCS

Index Selection (4)

« Can we do any better?
e |s the index U.servID necessary?

Lo Repeat for the
 Create a partial index

other six days of

the week!

*CREATE INDEX idx u_servID ON users (servIDy)
WHERE EXTRACT(dow FROM updated) = 2;

CREATE INDEX 1dx Ll servID ON locations (
servID, coordX, coordY);

N users (
EXTRACT (dow FROM updated))) ;
CMU SCS 15-415/615 23

CREATE INDEX idx u_uj

Faloutsos/Pavlo

g CMU SCS

Index Selection (5)

» Should we make the index on users a
covering index?
— What if U.data is large?
— Should userID come before servID?
— Do we still need the primary key index?

CREATE INDEX idx u everything ON users
(userID, servID)
WHERE EXTRACT(dow FROM updated) = 2;

Faloutsos/Pavlo CMU SCS 15-415/615 24

CMU sCs

Other Index Decisions

» What type of index to use?
— B+Tree, Hash table, Bitmap, R-Tree, Full Text

Faloutsos/Pavlo CMU SCS 15-415/615 25

g cMuscs
Today’s Class

» Denormalization
» Decomposition

* Partitioning

» Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615

26

g CMU SCS

Denormalization

« Joins can be expensive, so it might be
better to denormalize two tables back into
one.

 This is goes against all of the BCNF
goodness that we talked about it.

— But we have bills to pay, so this is an example
where reality conflicts with the theory...

Faloutsos/Pavlo CMU SCS 15-415/615 27

g CMU SCS

Game Example #1

CREATE TABLE players (
playerID INT PRIMARY KEY,

);

CREATE TABLE prefs (
playerID INT PRIMARY KEY
REFERENCES player (playerID),
data VARBINARY
);

Faloutsos/Pavlo CMU SCS 15-415/615

28

% CMU SCS g CMU SCS

Game Example #1 Game Example #1

CREATE TABLE players (
o Get player preferences (1:1) glaye\;igBix;RsRIMARY KEY,
ata »

SELECT P1.*, P2.* ([)enonnaﬁzeinu)}

FROM players AS P1 INNER JOIN prefs AS P2): ' parent table
ON Pl.playerlID P2.playerID k_ﬁ :

WHERE Pl.playerID = $1 L CREATE._TABLE. nrefs.(
SELECT P1.* FROM players AS P1

WHERE Pl.playerID = $1

UaTa " VARDIINWAKRT

);

Faloutsos/Pavlo CMU SCS 15-415/615 29 Faloutsos/Pavlo CMU SCs 15-415/615 30

g CMU SCS g CMU SCS

Denormalization (1:n) Game Example #2
’ . . CREATE TABLE players (
e It’s harder to denormalize tables with a 1:n playerID INT PRIMARY KEY,
relationship.)i
— Why? CREATE TABLE games (
gameID INT PRIMARY KEY,
« Example: There are multiple “game”)i
instances in our application that players CREATE TABLE scores (
.. . gameID INT REFERENCES games (gamelD),
participate in. We need to keep track of playerID INT REFERENCES players (playerID),
y score INT,
each player’s score per game. PRIMARY KEY (gameID, playerID)

);

Faloutsos/Pavlo CMU SCS 15-415/615 31 Faloutsos/Pavlo CMU SCS 15-415/615 32

% cMu sCs
Game Example #2

» Get the list of playerlIDs for a particular
game sorted by their score.

SELECT S.gameID, S.score, G.*, P.*

FROM players AS P, games AS G, scores AS S
WHERE G.gamelID = $1

AND G.gameID = S.gamelD

AND S.playerID = P.playerID
ORDER BY S.score DESC

Faloutsos/Pavlo CMU SCS 15-415/615 33

g CMU SCS

Game Example #2

CREATE TABLE players (
playerID INT PRIMARY KEY,

);

CREATE TABLE games (

gameID INT PRIMARY KEY,

playerID1 INT REFERENCES players (playerlD),
scorel INT,

playerID2 INT REFERENCES players (playerID),
score2 INT,

playerID3 INT REFERENCES players (playerlD),
score3 INT,

):'
i

Faloutsos/Pavlo CMU SCs 15-415/615 34

g CMU sCs
Arrays

» Denormalize 1:n relationships by storing
multiple values in a single attribute.
— Oracle: VARRAY
— Postgres: ARRAY
— DB2/MSSQL/SQLite: UDTs
— MySQL.: Fake it with VARBINARY
» Requires you to modify your application to
manage these arrays.
— DBMS will not enforce foreign key constraints.

Faloutsos/Pavlo CMU SCS 15-415/615 35

g CMU SCS

Game Example #2

CREATE TABLE players (
playerID INT PRIMARY KEY,

);

CREATE TABLE games (
gameID INT PRIMARY KEY,
playerIDs INTI[],
scores INT[],

);.

SELECT P * G * /\See: https://wiki.postgresgl.org/wiki/Array_Index
|G.scores[idxfETEI;;;rIDs, P.plgxngD)] AS scorel
FROM avers AS P JOIN games AS G

ONJP.playerID = ANY(G.playerlIDs)

WHERE G.gamelID = $1
ORDER BY score DESC;

fNMaﬂmwmdSQLﬂmMMn}

g CMU SCS

Game Example #2

CREATE TABLE players (
playerID INT PRIMARY KEY,

);

CREATE TABLE games (
gameID INT PRIMARY KEY,
playerScores INT[1[], -- (playerId, score)

);

No easy way to query this in pure SQL...

Faloutsos/Pavlo CMU SCS 15-415/615

37

g cMuscs
Today’s Class

» Decomposition
* Partitioning
» Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615

38

g CMU SCS

Decomposition

 Split physical tables up to reduce the
overhead of reading data during query
execution.
— Vertical: Break off attributes from a table.

— Horizontal: Split data from a single table into
multiple tables.

 This is an application of normalization.

Faloutsos/Pavlo CMU SCS 15-415/615

39

g CcMU sCS o .
Wikipedia Example

CREATE TABLE pages (

pageID INT PRIMARY KEY,

TOUE
|latest INT REFERENCES revisions (revID)l-
update

);

CREATE TABLE revisions (

pageID INT REFERENCES pages (pagelD),
XT,
updated DATETIME
);

Faloutsos/Pavlo CMU SCS 15-415/615

40

CMU sCs

Wikipedia Example

 Load latest revision for page

SELECT P.*, R.*
FROM pages AS
ON P.latest
WHERE P.pagelD

INNER JOIN revisions AS R
R.revID

$1

I 1 o

 Get all revision history for page

SELECT R.revID, R.updated,
FROM revisions AS R
WHERE R.pagelID = $1

Faloutsos/Pavlo CMU SCS 15-415/615 41

CMU SCs

Wikipedia Example

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT REFERENCES revisions (revID),
updated DATETIME

) [Avg. Size of Wikipedia

Revision: ~16KB

CREATE TABLE revV

INT PRI

\ A =4
content TEXT,

pages (pageID),

Faloutsos/Pavlo CMU SCS 15-415/615

42

g CMU SCS

Vertical Decomposition

 Split out large attributes into a separate
table (aka “normalize™).
 Trade-offs:

— Some queries will have to perform a join to get
the data that they need.

— But other queries will read less data.

Faloutsos/Pavlo CMU SCS 15-415/615 43

g CMU SCS

Vertical Decomposition

CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT REFERENCES revisions (revID),
updated DATETIME
);

LREATE. _TARILE. croysi

SELECT P.*, R.*, RD.*
FROM pages AS P, revisions AS R,
revData AS RD
WHERE P.pagelD $1
AND P.latest R.revID
AND R.revID = RD.revID

| content TEXT |
) ;

Faloutsos/Pavlo CMU SCS 15-415/615

44

% CMU SCS

Horizontal Decomposition

» Replace a single table with multiple tables
where tuples are assigned to a table based
on some condition.

» Can mask the changes to the application
using views and triggers.

Faloutsos/Pavlo CMU SCS 15-415/615

45

]
Then are

g CMU SCS

Horizontal Decomposition

CREATE TABLE revisions (
revID INT PRIMARY KEY,
pageID INT REFERENCES pages (pagelD),

updated DATETIME
); added to this table.
%

All new revisions are firs

SELECT R.revID, R.updated,
FROM revisions AS R
WHERE R.pageID = $1

T TUTTOT J

_ vIiD),
to this tab
longet

CREATE VIEW revData AS
CRE (SELECT * FROM revDataNew)
UNION

(SELECT * FROM revDataOld)

);

Faloutsos/Pavlo

CMU SCs 15-415/615 46

t]

g CcMU sCS
Today’s Class

* Partitioning
» Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615

47

g CMU SCS

Partitioning

 Split single logical table into disjoint
physical segments that are stored/managed
separately.

* |deally partitioning is transparent to the
application.

— The application accesses logical tables and
doesn’t care how things are stored.

— Not always true.

Faloutsos/Pavlo CMU SCS 15-415/615 48

g CMU SCS

Vertical Partitioning

 Store a table’s attributes in a separate
location (e.g., file, disk volume).

» Have to store tuple information to
reconstruct the original record.

Partition #1 " Partition #2

-
Tuple#l| revID pageID | updated corltent Tl}le#l >
=

Tuple#2| revID pageID | updated conment Tl}le#z >

w
Tuple#3| revID pageID | updated congent Tl}le#3 >
Tuple#4| revID pageID | updated cor\Eent Tl}le#4 >

49

g CMU SCS

Horizontal Partitioning

* Divide the tuples of a table up into disjoint
segments based on some partitioning key.
— Hash Partitioning
— Range Partitioning
— Predicate Partitioning

» We will cover this more in depth when we
talk about distributed databases.

Faloutsos/Pavlo CMU SCs 15-415/615 50

g CMU SCS

Horizontal Partitioning (Postgres)

CREATE TABLE revisions (
revID INT PRIMARY KEY,
pageID INT REFERENCES pages (pagelD),
updated DATETIME

);

CREATE TABLE revData (
revID INT REFERENCES revisions (revID),

nt TEXT - ID),
IisLatest BOOLEAN DEFAULT true | Still need triggers to
)i move data between
partitions on update.
{ CREATE TABLE revData(‘(’ ,
CREATE TABLE revDataNew (S| CREATE TABLE revDataOld (
CHECK (isLatest = true) CHECK (isLatest = false)
) INHERITS revData; i) INHERITS revData;

51

J

g CcMU sCS
Today’s Class

» Advanced Topics

Faloutsos/Pavlo CMU SCS 15-415/615 52

g cMu sCs -
Caching

 Queries for content that does not change
often slow down the database.

» Use external cache to store objects.
— Memcached, Facebook Tao
— Application has to maintain consistency.

Faloutsos/Pavlo CMU SCS 15-415/615

53

g CcMU sCs -
Auto-Tuning

 Vendors include tools that can help with
the physical design process:
— IBM DB2 Advisor
— Microsoft AutoAdmin
— Oracle SQL Tuning Advisor
— Random MySQL/Postgres tools

« Still a very manual process.
» We are working on something better...

Faloutsos/Pavlo CMU SCS 15-415/615 54

g CMU SCS
Next Three Weeks

» Database System Internals
— Concurrency Control
— Logging & Recovery
— Distributed DBMSs
— Column Store DBMSs

Faloutsos/Pavlo CMU SCS 15-415/615

56

