g CMU SCS

Carnegie Mellon Univ.
Dept. of Computer Science
15-415/615 - DB Applications

C. Faloutsos — A. Pavlo
Lecture#14: Implementation of
Relational Operations

¥ " Cost-based Query Sub-System

Select *

Queries From Blah B
Where B.blah = blah

<

Query Parser

|

Query Optimizer \

Plan Plan Cost Catalog Manager
Generator| | Estimator

Query Plan Evaluator S 3

‘g CMU SCS

* Sorting: ™
— External Merge Sort

* Projection:
— External Merge Sort
— Two-Phase Hashing J

Faloutsos/Pavlo CMU SCS 15-415/615

Last Class

These are for when
the data is larger

than the amount of
memory available.

g CMU SCS

Query Processing

« Some database operations are expensive.

e The DBMS can greatly improve
performance by being “smart”

- e.g., can speed up 1,000,000x over naive
approach

Faloutsos/Pavlo CMU SCS 15-415/615 5

g CMU SCS

Query Processing

* There are clever implementation techniques
for operators.

» We can exploit “equivalencies” of relational
operators to do less work.

» Use statistics and cost models to choose
among these.

Work smarter, not harder.

Faloutsos/Pavlo CMU SCS 15-415/615 6

% CMU SCS

Faloutsos/Pavlo

Today’s Class
 |ntroduction
» Selection
* Joins
» Explain

CMU SCs 15-415/615

g cMu scs
Sample Database

SAILORS RESERVES
G ame d 0 age C 01a da ame
1 |[Trump 999 45.0 6 |103 [2014-02-01 | matlock
3 | Obama 50 52.0 1 102 |2014-02-02 |macgyver
2 | Tupac 32 26.0 2 |101 |2014-02-02 |a-team
6 | Bieber 10 19.0 1]101 |2014-02-01 |dallas

Sailors(sid: int, sname: varchar, rating: int, age: real)
Reserves(sid: int, bid: int, day: date, rname: varchar)

Hoofer Sailing
Club

Faloutsos/Pavlo CMU SCS 15-415/615 8

g CMU SCS

Sample Database

SAILORS RESERVES
sid sname rating age sid bid day rname
1 |Trump 999 45.0 6 [103 [2014-02-01 | matlock
3 | Obama 50 52.0 1 102 |2014-02-02 |macgyver
2 |Tupac 32 26.0 2 |101 [2014-02-02 |a-team
6 | Bieber 10 19.0 1]101 |2014-02-01 |dallas

N=500, p.=80

Faloutsos/Pavlo

Each tuple is 50 bytes
80 tuples per page
500 pages total

Each tuple is 40

bytes

100 tuples per page

1000 pages total

M=1000, pz=100

CMU SCs 15-415/615

g CMU SCS

Single-Table Selection

SELECT *
FROM Reserves AS R
WHERE R.rname < ‘C%’

Faloutsos/Pavlo

Gmame<'cw’ (Reserves)

aname<‘C%’
> |

¢ RESERVES >
\

CMU SCS 15-415/615

10

‘% CMU SCS

Single-Table Selection

SELECT *
FROM Reserves AS R
WHERE R.rname < ‘C%’

* What’s the best way to execute this query?

* A: ltdependson...
— What indexes and access paths are available.

— What is the expected size of the result (in terms
of number of tuples and/or number of pages)

Faloutsos/Pavlo CMU SCs 15-415/615 11

‘g CMU SCS

e How
table
— Fil

Access Paths

the DBMS retrieves tuples from a
for a query plan.

e Scan (aka Sequential Scan)

— Index Scan (Tree, Hash, List, ...)

» Selectivity of an access path:
— % of pages we retrieve

—_ e.g

., Selectivity of a hash index, on range

query: 100% (no reduction!)

Faloutsos/Pavlo

CMU SCS 15-415/615

12

g CMU SCS

Simple Selections

o Size of result approximated as:
— (size of R) - (selectivity)
« Selectivity is also called Reduction Factor.

* The estimate of reduction factors is based
on statistics — we will discuss shortly.

Faloutsos/Pavlo CMU SCs 15-415/615 13

g CMU SCS

Selection Options

No Index, Unsorted Data
No Index, Sorted Data
B+Tree Index

Hash Index, Equality Selection

Faloutsos/Pavlo CMU SCS 15-415/615 14

CMU sCs

Selection: No Index, Unsorted Data

SELECT *
FROM Reserves AS R
WHERE R.rname < ‘C%’

* Must scan the whole relation.
— Cost: M

» For “Reserves” = 1000 I/Os.

Faloutsos/Pavlo CMU SCs 15-415/615 15

CMU sCSs

Selection: No Index, Sorted Data

SELECT *
FROM Reserves AS R
WHERE R.rname < ‘C%’

 Cost of binary search + number of pages
containing results.
— Cost: log, M + /selectivity - #pages /

Faloutsos/Pavlo CMU SCS 15-415/615 16

g CMU SCS

Selection: B+Tree Index

SELECT *
FROM Reserves AS R
WHERE R.rname < ‘C%’

» With an index on selection attribute:

— Use index to find qualifying data entries,
then retrieve corresponding data records.

» Note: Hash indexes are only useful for
equality selections.

Faloutsos/Pavlo CMU SCs 15-415/615 17

g CMU SCS

Selection: B+Tree Index

 Cost depends on #qualifying tuples, and
clustering.
— Finding qualifying data entries (typically small)
— Plus cost of retrieving records (could be large
w/o clustering).

Faloutsos/Pavlo CMU SCS 15-415/615 18

‘g CMU SCS

B+Tree Indexes

Index entries UNCLUSTERED
direct search

for data entries

CLUSTERED

Data entries Data entries

A5 ooo i) e

Data Records Data Records

Faloutsos/Pavlo CMU SCS 15-415/615 19

g CMU SCS

B+Tree Indexes

Index entries UNCLUSTERED
direct search

Data entries Data entries

TR (st

Data Records Data Records

rid-data

CMU SCS 15-415/615 20

Faloutsos/Pavlo

w}g CMU SCS

Selection: B+Tree Index

SELECT *
FROM Reserves AS R
WHERE R.rname < ‘C%’

 In example “Reserves” relation, if 10% of
tuples qualify (100 pages, 10,000 tuples):

— With a clustered index, cost is little more than
100 1/0s;

— If unclustered, could be up to 10,000 1/Os!
unless...

Faloutsos/Pavlo CMU SCs 15-415/615 21

g CMU SCS

Selection: B+Tree Index

» Refinement for unclustered indexes:
— Find qualifying data records by their rid.
— Sort rid’s of the data records to be retrieved.

— Fetch rids in order. This ensures that each data
page is looked at just once (though # of such
pages likely to be higher than with clustering).

Faloutsos/Pavlo CMU SCS 15-415/615 22

% CMU SCS

Partial Indexes

» Create an index on a subset of the entire
table. This potentially reduces its size and
the amount of overhead to maintain it.

CREATE INDEX idx foo

ON foo (a, b)
WHERE ¢ = ‘WuTang’

SELECT b FROM foo
WHERE a = 123 AND c =

‘WuTang’

Faloutsos/Pavlo CMU SCS 15-415/615

23

‘g CMU SCS
- =
?@

Covering Indexes

* If all of the fields needed to process the
query are available in an index, then the
DBMS does not need to retrieve the tuple.

CREATE INDEX idx foo
ON foo (a, b)

'SELECT{ b FROM foo WHERH a } 123!
e

CMU SCS 15-415/615 24

Faloutsos/Pavlo

g CMU SCS

Index Include Columns

* Embed additional columns in indexes to
support index-only queries.

 Not part of the search key.
CREATE INDEX idx foo

ON foox(a, b)
INC LUDE,((('
'SELECT b YROM foo
WHERA, a 123 AND{ c ‘WuTang’

T N

Faloutsos/Pavlo CMU SCS 15-415/615

25

g CMU SCS

Selection Conditions

» A B-tree index matches terms that involve
only attributes in a prefix of the search key.
— Index on <a, b, c> matches (a=5 AND b=3), but
not (b=3).

* For Hash index, we must have all attributes
in search key.

Faloutsos/Pavlo CMU SCS 15-415/615 26

% CMU SCS

B+Tree Prefix Search

Key = xy
Key =_y ~
()
?

XX (xy) zy 2z
-

Faloutsos/Pavlo CMU SCs 15-415/615 27

‘g CMU SCS

Two Approaches to Selection

» Approach #1: Find the cheapest access
path, retrieve tuples using it, and apply any
remaining terms that don’t match the index

» Approach #2: Use multiple indexes to find
the intersection of matching tuples.

Faloutsos/Pavlo CMU SCS 15-415/615 28

g cMu scs
Approach #1

 Find the cheapest access path, retrieve
tuples using it, and apply any remaining
terms that don’t match the index:
— Cheapest access path: An index or file scan
with fewest 1/0s.

— Terms that match this index reduce the number
of tuples retrieved; other terms help discard
some retrieved tuples, but do not affect number
of tuples/pages fetched.

Faloutsos/Pavlo CMU SCs 15-415/615 29

g CcMU sCS
Approach #1 — Example

(day<'10/13/2015’ AND bid=5 AND sid=3)

» A B+ tree index on day can be used;

— then, bid=5 and sid=3 must be checked for
each retrieved tuple.

» Similarly, a hash index on <bid, sid> could
be used:;
— Then, day<‘10/13/2015" must be checked.

Faloutsos/Pavlo CMU SCS 15-415/615 30

% cMu scs
Approach #1 — Example

(day<‘10/13/2015’ AND bid=5 AND sid=3)

* How about a B+tree on <rname, day>?
e How about a B+tree on <day, rname>?
* How about a Hash index on <day, rname>?

What if we have multiple indexes?

Faloutsos/Pavlo CMU SCs 15-415/615 31

g CcMU sCS
Approach #2

» Get rids from first index; rids from second
index; intersect and fetch.
* If we have 2 or more matching indexes:

— Get sets of rids of data records using each
matching index.

— Then intersect these sets of rids.

— Retrieve the records and apply any remaining
terms.

Faloutsos/Pavlo CMU SCS 15-415/615 32

g cMu scs
Approach #2 — Example

(day<‘10/13/2015’" AND bid=5 AND sid=3)

e With an index on day and an index on sid,

— We can retrieve rids of records satisfying
day<‘10/13/2015" using the first,

— rids of recs satisfying sid=3 using the second,
— intersect,
— retrieve records and check bid=5.

Faloutsos/Pavlo CMU SCs 15-415/615 33

g CcMU sCS
Approach #2 — Example

(day<‘10/13/2015’ AND bid=5 AND sid=3)

(Set intersection can be
done with bitmaps, hash
tables, or bloom filters.

day<‘10/13/2015’ sid=3

record ids record ids

fetch records

‘g CMU SCS

 For selections, we always want an index.
— B+Trees are more versatile.

— Hash indexes are faster, but only support
equality predicates.

o Last resort is to just scan entire table.

bid=5
Faloutsos/Pavlo CMU SCS 15-415/615 34 Faloutsos/Pavlo CMU SCS 15-415/615 35
‘g CMU SCS g CMU SCS
’ .
Today’s Class Joins

 Joins
» Explain

Faloutsos/Pavlo CMU SCS 15-415/615 36

* RS is very common and thus must be
carefully optimized.

* RXS followed by a selection is inefficient
because cross-product is large.

» There are many approaches to reduce join
cost, but no one works best for all cases.

* Remember, join is associative and
commutative.

Faloutsos/Pavlo CMU SCs 15-415/615 37

g CMU SCS

Joins

* Join techniques we will cover:
— Nested Loop Joins
— Index Nested Loop Joins
— Sort-Merge Joins
— Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 38

% CMU SCS

Joins

e Assume:
— M pages in R, pR tuples per page, m tuples total
— N pages in S, pS tuples per page, n tuples total
— In our examples, R is Reserves and S is Sailors.
» We will consider more complex join
conditions later.

e Cost metric: # of 1/0s

We will ignore
output costs

Faloutsos/Pavlo CMU SCs 15-415/615 39

g cMu scs -
First Example

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

» Assume that we don’t know anything about
the tables and we don’t have any indexes.

Faloutsos/Pavlo CMU SCS 15-415/615 40

g cMU scs
Simple Nested Loop Join

 Algorithm #0: Simple Nested Loop Join

foreach tuple r of R
foreach tuple s of S
output, if they match

R(A,..)

S(A,)

Faloutsos/Pavlo CMU SCs 15-415/615 41

g cMu scs
Simple Nested Loop Join

 Algorithm #0: Simple Nested Loop Join

~_outer relation

foreach tuple r of @4/
foreach tuple s o @\
h

output, if they ma

~Ninner relation

R(A,..)

S(A,)

Faloutsos/Pavlo CMU SCS 15-415/615 42

‘g CMU SCS

Simple Nested Loop Join

 Algorithm #0: Why is it bad?

* How many disk accesses (‘M’ and ‘N’ are
the number of blocks for ‘R” and “S’)?
—Cost: M+ (pR - M) - N

R(A,.)
M pages, S(A,)
m tuples N pages,
I n tuples
Faloutsos/Pavlo CMU SCS 15-415/615 43

‘g CMU SCS

Simple Nested Loop Join

e Actual number:

- M+ (pR - M) - N =1000 + 100 - 1000 - 500
=50,001,000 I/Os
— At 10ms/I10, Total time = 5.7 days

Faloutsos/Pavlo CMU SCS 15-415/615 44

g cMU scs
Simple Nested Loop Join

e Actual number:

-~ M+ (pR- M) - N=1000+ 1| SSD=1.3 hours
~50.001 at 0.1ms/10

— At 10ms/IO, Total time = 5.7 days

Faloutsos/Pavlo CMU SCs 15-415/615 45

g cMu scs
Simple Nested Loop Join

e Actual number:

—~ M+ (pR - M) - N=1000+ 1| SSD=1.3 hours
—5000L0 a0.1ms/10

— At 10ms/IO, Total time = 5.7 days
» What if smaller relation (S) was outer?

» What assumptions are being made here?

Faloutsos/Pavlo CMU SCS 15-415/615 46

Vg cMU scs
Simple Nested Loop Join

e Actual number:

-~ M+ (pR- M) - N=1000+ 1| SSD=1.3 hours
~50.001 at 0.1ms/10

— At 10ms/IO, Total time = 5.7 days
o What if smaller relation (S) was outer?
— Slightly better...

» What assumptions are being made here?
— 1 buffer for each table (and 1 for output)

Faloutsos/Pavlo CMU SCs 15-415/615 47

CMU sCSs

Block Nested Loop Join

 Algorithm #1: Block Nested Loop Join

read block from R
read block from S
output, if tuples match

R(A,..)

M pages, S(A,)
m tuples I

N pages,
n tuples

Faloutsos/Pavlo CMU SCS 15-415/615 48

CMU sCs

Block Nested Loop Join

 Algorithm #1: Things are better.

» How many disk accesses (‘M’ and ‘N’ are
the number of blocks for ‘R’ and “S’)?
— Cost: M + (M:N)

R(A,..)

M pages, S(A,)
m tuples I

N pages,
n tuples

Faloutsos/Pavlo CMU SCs 15-415/615 49

CMU sCS

Block Nested Loop Join

SSD = 50 seconds
at 0.1ms/10

e Actual number:
— M + (M-N) = 1000 + 1000 -
— At 10ms/10, Total time = 1.4 hours

* What if we use the smaller one as the outer
relation?
— The smallest in terms of # of pages.

Faloutsos/Pavlo CMU SCS 15-415/615 50

CMU sCs

Block Nested Loop Join

e Actual number:

— N+ (M:N) =500 + 1000 - 500 €500,500 1/0s

— At 10ms/10, Total time = 1.4 hours

» What if we have B buffers available?

Faloutsos/Pavlo CMU SCs 15-415/615 51

CMU sCSs

Block Nested Loop Join

 Algorithm #1: Using multiple buffers.

read B-2 blocks from R
read block from S
output, if tuples match

R(A,..)

M pages, S(A,)
m tuples N pages,
I n tuples

Faloutsos/Pavlo CMU SCS 15-415/615 52

CMU sCs

Block Nested Loop Join

 Algorithm #1: Using multiple buffers.

» How many disk accesses (‘M’ and ‘N’ are
the number of blocks for ‘R’ and “S’)?
— Cost: M+ ([M/(B-2)]N)

R(A,..)

M pages, SA,)
m tuples N pages,
I n tuples

Faloutsos/Pavlo CMU SCs 15-415/615 53

g cMu scs
Block Nested Loop Join

 Algorithm #1: Using multiple buffers.
 But if the outer relation fits in memory:

CMU sCs

Block Nested Loop Join

e Actual number:

~ M +N = 1000 + 500 = 1500,__ *0-1ms/1O

SSD = 0.15 seconds

— Cost: M+N — At 10ms/IO, Total time =~ 15 seconds
R(A,.)
M pages, S(A,)
m tuples N pages,
I n tuples
Faloutsos/Pavlo CMU SCS 15-415/615 54 Faloutsos/Pavlo CMU SCS 15-415/615 55
Joins Index Nested Loop

* Join techniques we will cover:
— Nested Loop Joins
mm) — Index Nested Loop Joins
— Sort-Merge Joins
— Hash Joins

Faloutsos/Pavlo CMU SCS 15-415/615 56

» Why do basic nested loop joins suck?

— For each tuple in the outer table, we have to do

a sequential scan to check for a match in the
inner table.
A Dbetter approach is to use an index to find
inner table matches.

— We could use an existing index, or even build
one on the fly.

Faloutsos/Pavlo CMU SCS 15-415/615

57

g CMU SCS

Index Nested Loop Join

 Algorithm #2: Index Nested Loop Join

foreach tuple r of R
foreach tuple s of S, where r;==s;

‘% CMU SCS

Index Nested Loop Join

 Algorithm #2: Index Nested Loop Join

* How many disk accesses (‘M’ and ‘N’ are
the number of blocks for ‘R” and “S’)?

output —Cost: M+m - C
[J Index Probe] ﬁ Look-up Cost]
R(A..) R(A,.)

M pages, S(A,) M pages, S(A,)
m tuples N pages, m tuples N pages,
I n tuples I n tuples
Faloutsos/Pavlo CMU SCS 15-415/615 58 Faloutsos/Pavlo CMU SCS 15-415/615 59

Nested Loop Joins Guideline Joins

* Pick the smallest table as the outer relation
— I.e., the one with the fewest pages

» Put as much of it in memory as possible
» Loop over the inner

Faloutsos/Pavlo CMU SCS 15-415/615 60

« Join techniques we will cover:
— Nested Loop Joins
— Index Nested Loop Joins
mm) - Sort-Merge Joins
— Hash Joins

Faloutsos/Pavlo CMU SCs 15-415/615 61

g cMu scs -
Sort-Merge Join

* First sort both tables on joining attribute.

» Then step through each one in lock-step to
find matches.

Faloutsos/Pavlo CMU SCS 15-415/615 62

% cMu scs -
Sort-Merge Join

 This algorithm is useful if:

— One or both tables are already sorted on join
attribute(s)

— Qutput is required to be sorted on join attributes

* The “Merge” phase can require some back
tracking if duplicate values appear in join
column.

Faloutsos/Pavlo CMU SCs 15-415/615 63

;,g cMu scs .
Sort-Merge Join

 Algorithm #3: Sort-Merge Join

» How many disk accesses (‘M’ and ‘N’ are
the number of blocks for ‘R’ and “S’)?
— Cost: (2M - logM/logB) + (2N - logN/logB)

+M+N
R(A,..)

M pages, S(A,)
m tuples N pages,
I n tuples

Faloutsos/Pavlo CMU SCS 15-415/615 64

g cMu scs -
Sort-Merge Join

 Algorithm #3: Sort-Merge Join

« How many dirm (‘m’ Fm
the number of b/ scks for ‘R’ and| &°)?
— Cost: (2M - logM/logB) + (2N - logN/logB)

+M+N
o

M pages, S(A,)
m tuples N pages,
I n tuples
Faloutsos/Pavlo CMU SCS 15-415/615 65

CMU sCS

Sort-Merge Join Example

SELECT *
FROM ilors S
WHERE_R.
0 a e 0 age a 0l[e da a
1 Trump 999 45.0 6 103 |2014-02-01 | matlock
3 Obama 50 52.0 1 102 |2014-02-02 | macgyver
2 |Tupac 32 26.0 2 |101 |2014-02-02 |a-team
6 Bieber 10 19.0 1 101 [2014-02-01 |dallas
Sort! Sort!
Faloutsos/Pavlo CMU SCS 15-415/615 66

% CMU SCS

Sort-Merge Join Example

SELECT *
FROM Reserves R, Sailors S
WHERE R.sid = S.sid

sid sname rating age sid bid day rname
1 Trump 999 45.0 1 102 [2014-02-02 | macgyver v
mp2 | Tupac 32 26.0 mpl [101 [2014-02-01 |[dallas v
mp3 [Obama 50 52.0 mp2 [101 [2014-02-02 |ateam |V
)6 | Bieber 10 19.0 mp6 [103 [2014-02-01 | matlock |V
Merge! Merge!

Faloutsos/Pavlo CMU SCS 15-415/615

67

CMU sCSs

Sort-Merge Join Example

» With 100 buffer pages, both Reserves and
Sailors can be sorted in 2 passes:

— Cost: 7,500 1/0s

— At 10ms/10, Total time = 75 seconds
* Block Nested Loop:

— Cost: 2,500 to 15,000 1/0Os

Faloutsos/Pavlo CMU SCS 15-415/615 68

g CMU SCS

Sort-Merge Join Example

« With 100 buffer pages, both
Sailors can be sorted in 2 p

— Cost: 7,500 1/0s

— At 10ms/10, Total time = 75 seconds
* Block Nested Loop:

— Cost: 2,500 to 15,000 1/0s

Faloutsos/Pavlo CMU SCS 15-415/615

Rreserves and
SSD = (.75 seconds
at 0.1ms/10

69

g CMU SCS

Sort-Merge Join

» Worst case for merging phase?

— When all of the tuples in both relations contain
the same value in the join attribute.

— Cost: (M - N) + (sort cost)

» Don’t worry kids! This is unlikely!

Faloutsos/Pavlo CMU SCS 15-415/615 70

Vg cMU scs
Sort-Merge Join Optimizations

« All the refinements from external sorting

* Plus overlapping of the merging of sorting
with the merging of joining.

» Multi-threaded optimizations.

Faloutsos/Pavlo CMU SCs 15-415/615 71

‘g CMU SCS

Joins

* Join techniques we will cover:
— Nested Loop Joins
— Index Nested Loop Joins
— Sort-Merge Joins
mm) - Hash Joins

Faloutsos/Pavlo

CMU SCS 15-415/615 72

g CMU SCS

In-Memory Hash Join

] This assumes H
 Algorithm #4: In—MeW fits in memory! }
/’/\
build hash table H for R

foreach tuple s of S
output, if h(s;)€ Hw___

Hash Table [A Hash Probe]
S(A,)

)

©

R(A, ...
i

Faloutsos/Pavlo

CMU SCs 15-415/615

73

g CMU SCS

Grace Hash Join

» Hash join when tables don’t fit in memory.

— Partition Phase: Hash both tables on the join
attribute into partitions.

— Probing Phase: Compares tuples in
corresponding partitions for each table.

* Named after the GRACE database machine.

Faloutsos/Pavlo CMU SCS 15-415/615 74

% CMU SCS

Grace Hash Join

e Hash Rinto (0, 1, ..., ‘max’) buckets
» Hash S into buckets (same hash function)

R(A, ...) S(A,))

© o

Faloutsos/Pavlo CMU SCs 15-415/615 75

‘g CMU SCS

Grace Hash Join

* Join each pair of matching buckets:

— Build another hash table for Hg;, and probe it
with each tuple of Hg;

R(A) | |0| | SA)

Faloutsos/Pavlo CMU SCS 15-415/615 76

g CMU SCS

Grace Hash Join

» Choose the (page-wise) smallest - if it fits in
memory, do a nested loop join
— Build a hash table (with H, !=H)
— And then probe it for each tuple of the other

Faloutsos/Pavlo CMU SCs 15-415/615 7

g CMU SCS

Grace Hash Join

* What if Hg is too large to fit in memory?
— Recursive Partitioning!

— More details (overflows, hybrid hash joins)
available in textbook (Ch 14.4.3)

Faloutsos/Pavlo CMU SCS 15-415/615 78

‘% CMU SCS

Grace Hash Join

 Cost of hash join?
— Assume that we have enough buffers.
— Cost: 3(M + N)
 Partitioning Phase: read+write both tables
— 2(M+N) 1/Os
* Probing Phase: read both tables
— M+N 1/Os

Faloutsos/Pavlo CMU SCs 15-415/615 79

‘g CMU SCS

Grace Hash Join

SSD = (.45 seconds
at 0.1ms/10

e Actual number:
—3(M + N) =3 (1000 + 500)
— At 10ms/10, Total time = 45 seconds

Faloutsos/Pavlo CMU SCS 15-415/615 80

g CMU SCS

Sort-Merge Join vs. Hash Join

* Given a minimum amount of memory both
have a cost of 3(M+N) 1/Os.

* When do we want to choose one over the
other?

Faloutsos/Pavlo CMU SCs 15-415/615 81

g CMU SCS

Sort-Merge Join vs. Hash Join

* Sort-Merge:
— Less sensitive to data skew.
— Result is sorted (may help upstream operators).
— Goes faster if one or both inputs already sorted.
» Hash:
— Superior if relation sizes differ greatly.
— Shown to be highly parallelizable.

Faloutsos/Pavlo CMU SCS 15-415/615 82

% cMU scs
Today’s Class

» Explain

Faloutsos/Pavlo CMU SCS 15-415/615

83

‘g CMU sCS
EXPLAIN

* When you precede a SELECT statement
with the keyword EXPLAIN, the DBMS
displays information from the optimizer
about the statement execution plan.

* The system “explains” how it would
process the query, including how tables are
joined and in which order.

Faloutsos/Pavlo CMU SCS 15-415/615 84

g CMU sCs
EXPLAIN

SELECT bid, COUNT(*) AS cnt
FROM Reserves

GROUP BY bid

ORDER BY cnt

Pseudo Query Plan:
SORT
CO&NT
GROGPBY
’;Cbid
RESgﬁVES

Faloutsos/Pavlo CMU SCS 15-415/615

85

g CMU sCS
EXPLAIN

EXPLAIN SELECT bid, COUNT(*) AS cnt
FROM Reserves

GROUP BY bid

ORDER BY cnt

¥

15-415=# EXPLAIN SELECT bid, COUNT(*) AS cnt FROM reserves GROUP BY bid ORDER BY cnt;

QUERY PLAN

Sort | ‘ost=4 49.24 rows=200 width=4)
Sort “Y_,.)
-> HashAr- < (cost=39.10..41.10 rows=200 width=4)

‘g CMU sCS
EXPLAIN

EXPLAIN SELECT bid, COUNT(*) AS cnt
FROM Reserves

GROUP BY bid

ORDER BY cnt

~ Sen € .0 n reserves (cost=0.00..29.40 rows=1940 width=4)
(4 rows)
Postgres v9.1 MySQL v5.5
Faloutsos/Pavlo CMU SCS 15-415/615 86 Faloutsos/Pavlo CMU SCS 15-415/615 87
CMU sCS g CMU sCS

* ANALYZE option causes the statement to be
actually executed.

The actual runtime statistics are displayed.

This is useful for seeing whether the
planner's estimates are close to reality.

Note that ANALYZE is a Postgres idiom.

Faloutsos/Pavlo CMU SCS 15-415/615 88

EXPLAIN ANALYZE

SELECT bid, COUNT(*) AS cnt
FROM Reserves

GROUP BY bid

ORDER BY cnt

Postgres v9.1

Faloutsos/Pavlo CMU SCS 15-415/615

89

g CMU sCS
EXPLAIN ANALYZE

» Works on any type of query.

» Since ANALYZE actually executes a query,

if you use it with a query that modifies the
table, that modification will be made.

Faloutsos/Pavlo CMU SCS 15-415/615 90

% CMU SCS

Summary

» There are multiple ways to do selections if
you have different indexes.

« Joins are difficult to optimize.

— Index Nested Loop when selectivity is small.
— Sort-Merge/Hash when joining whole tables.

Faloutsos/Pavlo CMU SCS 15-415/615

91

g CMU SCS
Next Class

» Set & Aggregate Operations
e Query Optimizations
e Mid-Term Review

Faloutsos/Pavlo CMU SCS 15-415/615 92

