Faloutsos - Pavlo CMU SCS 15-415/615

% CMU SCS g CMU SCS

: : Outline
Carnegie Mellon Univ.
Dept. of Computer Science « Motivation
15-415/615 — DB Applications * ISAM
* B-trees (not in book)
* B+ trees

C. Faloutsos & A. Pavlo .
Lecture#9 (R&G ch. 10) * duplicates

. ° + : .
Indexing B+ trees in practice

Faloutsos - Pavlo CMU SCS 15-415/615 2

Introduction Range Searches
 ““Find all students with gpa > 3.0"’
* may be slow, even on sorted file
* What to do?

* How to support range searches?
* equality searches?

Page 1 Page 2 ’ Page 3 ‘ ‘ Data File
Faloutsos - Pavlo CMU SCS 15-415/615 3 Faloutsos - Pavlo CMU SCS 15-415/615 4

CMU - 15-415 1

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS

Range Searches

 ““Find all students with gpa > 3.0"’
* may be slow, even on sorted file
* Solution: Create an ‘index’ file.

//r | \

/ \
Page 1 Page 2 ’ Page 3

Faloutsos - Pavlo CMU SCS 15-415/615

‘ Data File

g CMU SCS

Range Searches

* More details:

e Otherwise??

/ | \\

/ \ \

Faloutsos - Pavlo CMU SCS 15-415/615

% CMU SCS

ISAM

* Repeat recursively!

Non-leaf
Pages

Pages

Faloutsos - Pavlo CMU SCS 15-415/615

= A A e S

CMU - 15-415

« if index file is small, do binary search there

Index File

Data File

6

X ISAM

* OK - what if there are insertions and
overflows?

Non-leaf
Pages

Pages

Faloutsos - Pavlo CMU SCS 15-415/615

= A e S M

Faloutsos - Pavlo

% CMU SCS

ISAM

* Overflow pages, linked to the primary page

P e A e A

AY Ed 7
E> Overflow -~~~ E)
page N
Primary pages

CMU SCS 15-415/615 9

CMU SCS 15-415/615

£ Example ISAM Tree

* 2 entries per page
Root ~—a.
<L]
JRIEN

4 w b

(o [o] [[] [] [w]] [=] [s]]

Faloutsos - Pavlo CMU SCS 15-415/615 10

% CMU SCS

Root™
ISAM /L[H]Fg
Details

+ format of an index page?
* how full should a newly created ISAM be?

Faloutsos - Pavlo CMU SCS 15-415/615 11

CMU - 15-415

g CMU SCS

ISAM /LR@FH
Details

» format of an index page?

* how full should a newly created ISAM be?
— ~80-90% (not 100%)

Faloutsos - Pavlo CMU SCS 15-415/615 12

Faloutsos - Pavlo

CMU SCS

ISAM is a STATIC Structure

« that is, index pages don’ t change

* File creation: Leaf (data) pages
allocated sequentially, sorted by search
key; then index pages allocated, then
overflow pgs.

Faloutsos - Pavlo CMU SCS 15-415/615 13

CMU SCS 15-415/615

CMU SCS

ISAM is a STATIC Structure

 Search: Start at root; use key
comparisons to go to leaf.

e Cost=17?

Faloutsos - Pavlo CMU SCS 15-415/615 14

CMU SCS

ISAM 1s a STATIC Structure

* Search: Start at root; use key
comparisons to go to leaf.

e Cost=17?

Faloutsos - Pavlo CMU SCS 15-415/615 N 15

CMU - 15-415

CMU SCS

ISAM 1s a STATIC Structure

* Search: Start at root; use key
comparisons to go to leaf.

* Cost=log ¢ N;
* F =# entries/pg (i.e., fanout),
* N =# leaf pgs

Faloutsos - Pavlo CMU SCS 15-415/615 16

Faloutsos - Pavlo CMU SCS 15-415/615

CMU SCS

¥ ““Example: Insert 23*, 48%, 41%,

ISAM 1s a STATIC Structure 40%

Insert: Find leaf that data entry belongs foot .

to, and put it there. Overflow page if Index L=l]
necessary. e) .

Delete: Find and remove from leaf; if]| =]
empty page, de-allocate. Primary
Pages ’10*‘15*‘ lzo* 27*‘ ’33*‘37*‘ 140*‘ 46“ ’51*‘ ss*‘ ’es*‘ 97*‘
¥
o [2]] [*T"
42*
Faloutsos - Pavlo CMU SCS 15-415/615 17 Faloutsos - Pavlo CMU SCS 15-415/615 18

. ... then delete 42*, 51%*, 97*
21* means o
ol
¢ <21> +rest of record A ; .
+ (it’s a bit more complicated — but we stay [=][=]][]
with that, for the moment). Primary J \ s
* ‘21’ plain means just 4 bytes, to store ooes [] {\2"* | [o] 1\“" I
i {
integer 21 e o]] ‘Vm
21% —>‘ 21 ‘ (name, age, etc) ‘ ~record Pages
21 —» divider w Note that 51 appears in index levels, but not in leaf!
Faloutsos - Pavlo CMU SCS 15-415/615 19 Faloutsos - Pavlo CMU SCS 15-415/615 20

CMU - 15-415 5

Faloutsos - Pavlo

ES

CMU SCS

ISAM ---- Issues?

¢ Pros
— 2777

* Cons
—277?

Faloutsos - Pavlo CMU SCS 15-415/615

21

CMU SCS 15-415/615

g CMU SCS

Outline
* Motivation
 [SAM
* B-trees (not in book)
e B+ trees

* duplicates
* B+ trees in practice

Faloutsos - Pavlo CMU SCS 15-415/615 22

CMU SCS

B-trees

* the most successful family of index
schemes (B-trees, B*trees, B*-trees)

* Can be used for primary/secondary,
clustering/non-clustering index.

e balanced “n-way” search trees

Faloutsos - Pavlo CMU SCS 15-415/615

23

CMU - 15-415

% CMU SCS

B-trees

[Rudolf Bayer and McCreight, E. M.
Organization and Maintenance of Large

Ordered Indexes. Acta Informatica 1,
173-189, 1972.]

Faloutsos - Pavlo CMU SCS 15-415/615 24

Faloutsos - Pavlo

% CMU SCS

B-trees

Eg., B-tree of order d=1:

CMU SCS 15-415/615

Lg MU SCS
B - tree properties:

¢ cach node, in a B-tree of order d:
— Key order
— at most n=2d keys

— at least d keys (except root, which may have just 1 key)
— all leaves at the same level
— if number of pointers is k, then node has exactly k-1

< 6 }|o
>6 /<9 >9
Faloutsos - Pavlo CMU SCS 15-415/615 25
% CMU SCS
Properties
e “block aware” nodes: each node -> disk
page

O(log (N)) for everything! (ins/del/search)
typically, if d = 50 - 100, then 2 - 3 levels

utilization >= 50%, guaranteed; on average
69%

Faloutsos - Pavlo CMU SCS 15-415/615 27

CMU - 15-415

keys
— (leaves are empty) P, Puit
vi [ilv || || ¥»
\
Faloutsos - Pavlo CMU SCS 15-415/615 26
g CMU SCS$
Queries

* Algo for exact match query? (eg., ssn=87)

<6 6 4|9
>6 /<9 >9
Faloutsos - Pavlo CMU SCS 15-415/615 28

Faloutsos - Pavlo

g CMU SCS
JAVA animation!

strongly recommended! (with all usual pre-
cautions — VM etc)

Faloutsos - Pavlo CMU SCS 15-415/615

29

CMU SCS 15-415/615

g CMU SCS

Queries

* Algo for exact match query? (eg., ssn=87)

<6 16 H 9 |

~6 %9 >9

Faloutsos - Pavlo CMU SCS 15-415/615 30

g CMU SCS
Queries

* Algo for exact match query? (eg., ssn=87)

<6 6 Lo
>6 s <9 >9
Faloutsos - Pavlo CMU SCS 15-415/615

31

CMU - 15-415

g CMU SCS

Queries

* Algo for exact match query? (eg., ssn=87)

<6 16 Lo |
>6x <9 >9
Faloutsos - Pavlo CMU SCS 15-415/615 32

Faloutsos - Pavlo

CMU SCS 15-415/615

g CMU SCS

Queries

* Algo for exact match query? (eg., ssn=8?)

<6 6 i\ H steps (= disk
=6 /<9 >9 accesses)
Faloutsos - Pavlo CMU SCS 15-415/615 33

g CMU SCS

Queries
* what about range queries? (eg., S<salary<8)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

Faloutsos - Pavlo CMU SCS 15-415/615 34

% CMU SCS

Queries

* what about range queries? (eg., 5<salary<8§)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

<6 6 }|9

>6 /<9 >9

orgeayTe

Faloutsos - Pavlo CMU SCS 15-415/615 35

g CMU SCS

Queries

* what about range queries? (eg., 5<salary<8§)

* Proximity/ nearest neighbor searches? (eg.,
salary ~8)

/ >9

Faloutsos - Pavlo CMU SCS 15-415/615 36

CMU - 15-415

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS

Queries

* what about range queries? (eg., S5<salary<S8)
* Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)
<6 6 }|9
>6 /<9 >0
N/ El !!!7 !|! [!!13 !|! |
] L] L]
Faloutsos - Pavlo CMU SCS 15-415/615 37

g CMU SCS

Queries

* what about range queries? (eg., S<salary<S8)
* Proximity/ nearest neighbor searches? (eg.,

B-trees: Insertion

* Insert in leaf; on overflow, push middle up
(recursively)
* split: preserves B - tree properties

Faloutsos - Pavlo CMU SCS 15-415/615 39

salary ~ 8)
<6 6 b9
>6 /<9 >0
Faloutsos - Pavlo CMU SCS 15-415/615 38
g CMU SCS$
B-trees

Easy case: Tree TO; insert ‘8’

<6 6 L9
>9

Faloutsos - Pavlo CMU SCS 15-415/615 40

CMU - 15-415

10

Faloutsos - Pavlo CMU SCS 15-415/615

% CMU SCS g CMU SCS
B-trees B-trees
Tree TO; insert ‘8’ Hardest case: Tree TO; insert ‘2’
<6 6 Lo <6 6 Lo
6,/ <9 % >6 /<9 >?
!I!l !I!3 !l! !I! 7 !l! 8 !I! I!ls !l! || !I! 1 !|!3 !I! !I! 7 !l! || |!13 !l! ||
2
Faloutsos - Pavlo CMU SCS 15-415/615 41 Faloutsos - Pavlo CMU SCS 15-415/615 42

% CMU SCS g CMU SCS
B-trees B-trees

Hardest case: Tree TO; insert ‘2’ Hardest case: Tree TO; insert ‘2’

push middle up

Faloutsos - Pavlo CMU SCS 15-415/615 43 Faloutsos - Pavlo CMU SCS 15-415/615 44

CMU - 15-415 11

Faloutsos - Pavlo CMU SCS 15-415/615

% CMU SCS g CMU SCS

B-trees B-trees: Insertion
Hardest case: Tree TO; insert ‘2’ * Insert in leaf; on overflow, push middle up
“ (recursively — ‘propagate split’)
Final state \ * split: preserves all B - tree properties (!!)

notice how it grows: height increases when

2 1 root overflows & splits
Automatic, incremental re-organization
1 ‘ (contrast with ISAM!)
i i

Faloutsos - Pavlo CMU SCS 15-415/615 45 Faloutsos - Pavlo CMU SCS 15-415/615 46

% CMU SCS g CMU SCS

Pseudo-code

INSERTION OF KEY 'K’ Overview
find the correct leaf node "L’ ;

if ("L" overflows){ e ...
split "L’ , and push middle key to parent node 'P’;
if C P’ overflows){

e B —trees

— Dfn, Search, insertion, deletion
repeat the split recursively; }

else{

add the key 'K’ in node "L’;

/* maintaining the key orderin 'L’ */ }

Faloutsos - Pavlo CMU SCS 15-415/615 47 Faloutsos - Pavlo CMU SCS 15-415/615 48

CMU - 15-415 12

Faloutsos - Pavlo

% CMU SCS

Deletion
Rough outline of algo:
* Delete key;

* on underflow, may need to merge

In practice, some implementors just allow
underflows to happen...

Faloutsos - Pavlo CMU SCS 15-415/615

49

CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

Easiest case: Tree TO; delete ‘3’

<6 6 L9
>6 /<9 >9
Faloutsos - Pavlo CMU SCS 15-415/615 50

% CMU SCS
B-trees — Deletion

Easiest case: Tree TO; delete ‘3’

<6 6 9
>6 /<9 >9
Faloutsos - Pavlo CMU SCS 15-415/615

51

CMU - 15-415

g CMU SCS

B-trees — Deletion

Casel: delete a key at a leaf — no underflow

Case2: delete non-leaf key — no underflow

Case3: delete leaf-key; underflow, and ‘rich
sibling’

Case4: delete leaf-key; underflow, and ‘poor
sibling’

Faloutsos - Pavlo CMU SCS 15-415/615 52

13

Faloutsos - Pavlo

% CMU SCS

B-trees — Deletion

* Casel: delete a key at a leaf — no underflow
(delete 3 from TO)

<6 6 4|9
>6 /<9 >9
Faloutsos - Pavlo CMU SCS 15-415/615 53

CMU SCS 15-415/615

g CMU SCS

B-trees — Deletion

* Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

Delete &
<6 6 9 promote, ie:
>6 /<9 >9
Faloutsos - Pavlo CMU SCS 15-415/615 54

% CMU SCS
B-trees — Deletion

* Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

\ Delete &

<6 9 promote, ie:

Faloutsos - Pavlo CMU SCS 15-415/615 55

CMU - 15-415

g CMU SCS
B-trees — Deletion

* Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

\ Delete &

<6 31019 promote, ie:

Faloutsos - Pavlo CMU SCS 15-415/615 56

14

Faloutsos - Pavlo CMU SCS 15-415/615

% CMU SCS g CMU SCS

B-trees — Deletion B-trees — Deletion
* Case2: delete a key at a non-leaf — no * Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO) underflow (eg., delete 6 from TO)
* Q: How to promote?
FINALTREE 3 [* A: pick the largest key from the left sub-tree
<3 .
~9 (or the smallest from the right sub-tree)
>3 /<9
HI_H_” HLH_” gﬁ!_” e Observation: every deletion eventually
becomes a deletion of a leaf key

% CMU SCS g CMU SCS

B-trees — Deletion B-trees — Deletion
* Casel: delete a key at a leaf — no underflow e Case3: underflow & ‘rich sibling’ (eg.,
e Case2: delete non-leaf key — no underflow delete 7 from TO)
= * Case3: delete leaf-key; underflow, and ‘rich Delete &
sibling’ <6 6 9 borrow, ie:
 Case4: delete leaf-key; underflow, and ‘poor >6 /<9 >9
sibling’ !I! 1 !I!s !I! !I! 7 !I! || I! 13 !I! ||

CMU - 15-415 15

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from TO)
Delete &
<6 6 9 borrow, ie:
Rich sibling
>6 /<9 >9
\
Faloutsos - Pavlo CMU SCS 15-415/615 61

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’

e ‘rich’ = can give a key, without

underflowing
e ‘borrowing’ a key: THROUGH the
PARENT!

% CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’ (eg.,

delete 7 from TO)
Delete &
<6 6 9 borrow, ie:
Rich sibling
>6 /<9 >9
\
1 |l3 13

1 A

i NOIt_
Faloutsos - Pavlo CMU SCS 15-415/615 63

g CMU SCS

B-trees — Deletion

e Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &
<6 6 9 borrow, ie:

Faloutsos - Pavlo CMU SCS 15-415/615 64

CMU - 15-415

16

Faloutsos - Pavlo CMU SCS 15-415/615

B-trees — Deletion B-trees — Deletion
e Case3: underflow & ‘rich sibling’ (eg., e Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO) delete 7 from TO)

Delete & FINAL TREE Delete &

<6 3 9 borrow, ie: <3 3 9 borrow,
through the

>6 /\<9 >9 >3 /<9 < parent
!I! 1 !l! !I! !l! 6 !I! || |! 13 !I! || !l! 1 !I! || !|! 6 !I! || |! 13 !I! ||

Faloutsos - Pavlo CMU SCS 15-415/615 65 Faloutsos - Pavlo CMU SCS 15-415/615 66

% CMU SCS g CMU SCS

B-trees — Deletion B-trees — Deletion
* Casel: delete a key at a leaf — no underflow e Case4: underflow & ‘poor sibling’ (eg.,
e Case2: delete non-leaf key — no underflow delete 13 from TO)
* Case3: delete leaf-key; underflow, and ‘rich
sibling’ <6 6 }|o9

= e Cased: delete leaf-key; underflow, and ‘poor

sibling’ !!1!!3 !! !!7!! I !13!! I

Faloutsos - Pavlo CMU SCS 15-415/615 67

Faloutsos - Pavlo CMU SCS 15-415/615 68

CMU - 15-415 17

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS

B-trees — Deletion

 Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

<6 6 4|9
>6 /<9 >9
Faloutsos - Pavlo CMU SCS 15-415/615 69

g CMU SCS

B-trees — Deletion

e Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

6 9 A: merge w/
<6 [’ . .
~9 poor’ sibling
6/<9
Faloutsos - Pavlo CMU SCS 15-415/615 70

% CMU SCS

B-trees — Deletion

Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

Merge, by pulling a key from the parent

e exact reversal from insertion: ‘split and push
up’, vs. ‘merge and pull down’

o Je.:

Faloutsos - Pavlo CMU SCS 15-415/615 71

g CMU SCS$

B-trees — Deletion

e Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

A: merge w/
‘poor’ sibling

Faloutsos - Pavlo CMU SCS 15-415/615 72

CMU - 15-415

18

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS

B-trees — Deletion

 Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

FINAL TREE
= 'l
>6
s 7 0o |
] L]

Faloutsos - Pavlo CMU SCS 15-415/615 73

g CMU SCS

B-trees — Deletion

Case4: underflow & ‘poor sibling’

-> ‘pull key from parent, and merge’
Q: What if the parent underflows?
A: repeat recursively

Faloutsos - Pavlo CMU SCS 15-415/615 74

% CMU SCS
B-tree deletion - pseudocode

DELETION OF KEY 'K’
locate key "K', in node "N’
if(’ N’ is a non-leaf node) {
delete 'K’ from 'N’;
find the immediately largest key "K1’;
/* which is guaranteed to be on aleaf node 'L’ */
copy K1 in the old position of 'K’ ;
invoke this DELETION routine on K1’ from the leaf node "L’ ;
else {
/*’"N’ is a leaf node */
... (next slide..)

Faloutsos - Pavlo CMU SCS 15-415/615 75

g CMU SCS$

B-tree deletion - pseudocode

/*’N’ is a leaf node */
ift” N’ underflows)
let N1’ be the sibling of "N’ ;
if(" N1 is "rich"){ /*ie., N1 can lend us a key */
borrow a key from "N1’ THROUGH the parent node;
telse{ /*N1is 1 key away from underflowing */
MERGE: pull the key from the parent ' P’,
and merge it with the keys of "N’ and "N1’ into a new

node;
if(P’ underflows){ repeat recursively }
Faloutsos - Pavlo CMU SCS 15-415/615 76

CMU - 15-415

19

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS
Outline

* Motivation
+ ISAM
* B-trees (not in book)

— algorithms
— extensions

* B+ trees
* duplicates
* B+ trees in practice

Faloutsos - Pavlo CMU SCS 15-415/615

77

g CMU SCS

Variations

* How could we do even better than the B-
trees above?

Faloutsos - Pavlo CMU SCS 15-415/615 78

% CMU SCS

B*-tree

¢ In B-trees, worst case util. = 50%, if we
have just split all the pages

¢ how to increase the utilization of B - trees?

e _with B* - trees!

Faloutsos - Pavlo CMU SCS 15-415/615

79

CMU - 15-415

g CMU SCS$

B-trees and B*-trees

Eg., Tree TO; insert 2’

<6 6 }|9
>6 /<9 >9
2
Faloutsos - Pavlo CMU SCS 15-415/615 80

20

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS

B*-trees: deferred split!

* Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

<6 6 }| 9
t

Faloutsos - Pavlo CMU SCS 15-415/615 81

g CMU SCS

B*-trees: deferred split!

* Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)
. 3 1|9

1)2 !I!6!|! 7|| I!ls!l! ||
!

Faloutsos - Pavlo CMU SCS 15-415/615 82

FINAL TREE

% CMU SCS

B*-trees: deferred split!

» Notice: shorter, more packed, faster tree

o It's a rare case, where space utilization and
speed improve together

« BUT: What if the sibling has no room for
our ‘lending’ ?

Faloutsos - Pavlo CMU SCS 15-415/615 83

CMU - 15-415

g CMU SCS

B*-trees: deferred split!

* A: 2-to-3 split: get the keys from the
sibling, pool them with ours (and a key
from the parent), and split in 3.

* Could we extend the idea to 3-to-4 split, 4-
to-5 etc?

Faloutsos - Pavlo CMU SCS 15-415/615 84

21

Faloutsos - Pavlo

% CMU SCS

B*-trees: deferred split!

* A: 2-to-3 split: get the keys from the
sibling, pool them with ours (and a key
from the parent), and split in 3.

* Could we extend the idea to 3-to-4 split, 4-
to-5 etc?

* Yes, but: diminishing returns

Faloutsos - Pavlo CMU SCS 15-415/615 85

CMU SCS 15-415/615

g CMU SCS

Outline
* Motivation
 [SAM
* B-trees (not in book)
B+ trees

* duplicates
* B+ trees in practice

Faloutsos - Pavlo CMU SCS 15-415/615 86

B+ trees - Motivation

For clustering index, data records are

scattered:
<6 6 L9

Faloutsos - Pavlo CMU SCS 15-415/615 87

g CMU SCS

Solution: B* - trees

facilitate sequential ops

They string all leaf nodes together
* AND

replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level

e (vital, for clustering index!)

Faloutsos - Pavlo CMU SCS 15-415/615 88

CMU - 15-415

22

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS

g CMU SCS

B+ trees
<6 6 }|9
>=6 /<9 =9
13 6 W7 =] |! 9 !l!gs !I!
Faloutsos - Pavlo CMU SCS 15-415/615 90

* More details: next (and textbook)
* In short: on split
— at leaf level: COPY middle key upstairs

— at non-leaf level: push middle key upstairs (as
in plain B-tree)

Faloutsos - Pavlo CMU SCS 15-415/615

B+ trees
<6 6 }|9
>=6 /<9 =9
1 |3 6 W7 9 |13
Faloutsos - Pavlo CMU SCS 15-415/615 89
% CMU SCS$
B-+trees

91

CMU - 15-415

g CMU SCS$

Example B+ Tree

 Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

» Search for F;S * 1{", all data entries >=
24% ..

lz*ls*ls*lr‘ |14*|16*| | ‘ |19*|zo* zz*l ‘ |24~|27'|29*| ‘ l33*|34’|38*|39"‘

Based on the search for 15%, we know it is not in the tree!

Faloutsos - Pavlo CMU SCS 15-415/615 92

23

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS g CMU SCS

B+ Trees in Practice B+ Trees in Practice
* Typical order: 100. Typical fill-factor: * Can often keep top levels in buffer pool:
67%. —Level 1 = 1 page= 8KB
— average fanout = 2*100*0.67 = 134 —Level 2= 134 pages= 1 MB
* Typical capacities: — Level 3= 17,956 pages = 140 MB

— Height 4: 133%4=312,900,721 entries
— Height 3: 1333 = 2,406,104 entries

Faloutsos - Pavlo CMU SCS 15-415/615 93 Faloutsos - Pavlo CMU SCS 15-415/615 94

¥ “““Inserting a Data Entry into a B+ E

- 1 *
Tree Example B+ Tree - Inserting 8

Root

* Find correct leaf L.

* Put data entry onto L.
— If L has enough space, done!

|2*|3*|5*|7*‘ |14*|1s*| | ‘ |19*|20* 22*|23*‘ |24*|27'|29*| ‘

— Else, must split L (into L and a new node L2)

* Redistribute entries evenly, copy up middle
key.
 parent node may overflow

— but then: push up middle key. Splits “grow” tree;
root split increases height.

Faloutsos - Pavlo CMU SCS 15-415/615 95 Faloutsos - Pavlo CMU SCS 15-415/615 96

CMU - 15-415 24

Faloutsos - Pavlo CMU SCS 15-415/615

g MU SCS g MU SCS
Example B+ Tree - Inserting 8* Example B+ Tree - Inserting 21*

Root

Root*
IBEER

LS S e S
I LT] (] T [refeofzef=] [2ef2rize]]

el p A~ Y 3
lz* |3*|5*|7*‘ |14"|16*| | ‘ |19*|20* zz*lza'l |z4*|27*|29*| ‘

DaEal T

<5

— P - s A =
I T (e)rle D] Delel T [efeoferfes] foe]orfeo]] I S S I G s i 2]]

Faloutsos - Pavlo CMU SCS 15-415/615 97 Faloutsos - Pavlo CMU SCS 15-415/615 98

g CMU SCS % CMU SCS

Example B+ Tree - Inserting 21* Example B+ Tree

Roox
[= [l][or[[]

L L A L
0 O O K S S | S A B

F (T[] [l [(o] T [erfle] | (o]]

[

EEL L] el o0 1] [P e]

* Notice that root was split, increasing height.
* Could use defer-split here. (Pros/Cons?)

Faloutsos - Pavlo CMU SCS 15-415/615 99 Faloutsos - Pavlo CMU SCS 15-415/615 100

CMU - 15-415 25

Faloutsos - Pavlo

CMU SCS 15-415/615

% " Example: Data vs. Index Page
Split <

-
Data = ﬂnﬂ.ﬂ

* leaf: ‘copy’ gzﬁ’te
* non-leaf: ‘push’ o
I 0 I I 0 S 0 I AR
+ why not ‘copy’ QU
@ronens? 1 LT]

Page

Split gl &
V//

5|13 21|| 24

Faloutsos - Pavlo CMU SCS 15-415/615 101

® Now you try...

Root*

® ... (not shown)

I O 3 A R S S I R S

Insert the following data entries (in order): 28%, 6%, 25*

Faloutsos - Pavlo CMU SCS 15-415/615 102

® Now you try...

After inserting 28*
Root*

= ... (not shown)

LS \ Ve a L &
0 O O K S I I SR S B

N

Insert the following data entries (in order): 28%, 6%, 25*

Faloutsos - Pavlo CMU SCS 15-415/615 103

LS - e a ey ~ Ve &
8 5 0 O I I S A S
L)

Y

—t—

17] fre]

Faloutsos - Pavlo CMU SCS 15-415/615 104

CMU - 15-415

26

Faloutsos - Pavlo CMU SCS 15-415/615

g CMU SCS g CMU SCS

Answer... Answer...

g A LS a A a TN a g L L 5 L a L a
0 O O O O G S G 0 O I O G T G
insert 25%: insert 25%:
Q1: which pages will be affected: Q1: which pages will be affected: Al: red arrows
Q2: how will the root look like after that? Q2: how will the root look like after that? A2: (13;30; _;)
Faloutsos - Pavlo CMU SCS 15-415/615 105 Faloutsos - Pavlo CMU SCS 15-415/615 106

B Answer... X lDeleting a Data Entry from a B+

Tree

After inserting 25*

CEE

+ Start at root, find leaf L where entry belongs.

* Remove the entry.
— If L is at least half-full, done!
l\j — If L underflows

* Try to re-distribute, borrowing from sibling
(adjacent node with same parent as L).

o If re-distribution fails, merge L and sibling.
— update parent

25%* causes propagated split!

— and possibly merge, recursively
Faloutsos - Pavlo CMU SCS 15-415/615 107 Faloutsos - Pavlo CMU SCS 15-415/615 108

CMU - 15-415 27

Faloutsos - Pavlo

X Example: Delete 19* & 20*

Root

Deleting 19*
is easy:
N

I I 2 O 5 G S

CMU SCS 15-415/615

PN N PN 4 VN Y
I O O O O o X I S E
* Deleting 20* -> re-distribution (notice:
Faloutsc 27 Copied up) 109

% CMU SCS
... And Then Deleting 24*

N T A TN N b T =
0 s 4 5 I I S ES S

R
el LI

AN
oL][1]
VN

VN N PN &
0 O S I S G EE

Fee Must merge leaves ... but are we done??

g oMU SCS Merge Non-LeafNodeS, Shrink

Tree

@ Root

Lo][] =]

T TN TN TN
G 5 e I S N S
Faloutsos - Pavlo CMU SCS 15-415/615 111

CMU - 15-415

X% “** Example of Non-leaf Re-
distribution

* Tree is shown below during deletion of 24%*.
* Now, we can (and must) re-distribute keys

LN

VETFLT Jefel | e i | e]t

Faloutsos - Pavlo CMU SCS 15-415/615 112

28

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS
After Re-distribution

« need only re-distribute ‘20" ; did ‘17", too
» why would we want to re-distributed more
keys?

Root

oo Tl ol T o] |] o

Faloutsos - Pavlo CMU SCS 15-415/615 113

5+

g CMU SCS

Main observations for deletion

* If a key value appears twice (leaf +
nonleaf), the above algorithms delete it
from the leaf, only

* why not non-leaf, too?

Root\A
B EIER
T s L A
[0 I O 3 5 | S G
Faloutsos - Pavlo CMU SCS 15-415/615 114

% CMU SCS

Main observations for deletion

* ‘lazy deletions’ - in fact, some vendors just
mark entries as deleted (~ underflow),

— and reorganize/compact later

Root\A

'I 22*| zgﬁzvl 27*|29*|]

EERRGEGRGCERGR

Faloutsos - Pavlo CMU SCS 15-415/615 115

g CMU SCS$

Main observations for deletion
* ‘lazy deletions’ - in fact, some vendors just

mark entries as deleted (~ underflow),

— and reorganize/compact later

Roo&
Lo L [l o]l =

A A A A
(3 5 O O O s S S | S S

Q: Now, what?
Faloutsos - Pavlo CMU SCS 15-415/615 116

CMU - 15-415

29

Faloutsos - Pavlo

% CMU SCS

Main observations for deletion

* ‘lazy deletions’ - in fact, some vendors just
mark entries as deleted (~ underflow),

— and reorganize/compact later

1 P X AN
VEEL LT[J{refre]] [rfofeefesy [eferee]]
Q: Now, what? A:_‘Merge’
Faloutsos - Pavlo CMU SCS 15-415/615 117

CMU SCS 15-415/615

g CMU SCS

Recap: main ideas

+ on overflow, split (and ‘push’, or ‘copy’)
— or consider deferred split

* on underflow, borrow keys; or merge

— or let it underflow...

Faloutsos - Pavlo CMU SCS 15-415/615 118

% CMU SCS

Outline
* Motivation
 [SAM
* B-trees (not in book)
¢ B+ trees

* duplicates
* B+ trees in practice

— prefix compression; bulk-loading; ‘order’

Faloutsos - Pavlo CMU SCS 15-415/615 119

CMU - 15-415

g CMU SCS$

B+ trees with duplicates

 Everything so far: assumed unique key
values

* How to extend B+-trees for duplicates?
— Alt. 2: <key, rid>
— Alt. 3: <key, {rid list}>

» 2 approaches, roughly equivalent

Faloutsos - Pavlo CMU SCS 15-415/615 120

30

Faloutsos - Pavlo

CMU SCS 15-415/615

g CMU SCS

B+ trees with duplicates

» approach#1: repeat the key values, and
extend B+ tree algo’ s appropriately - eg.
many ‘14’ s

lz* |3' | 5 | ™ ‘ |13*|14*|14*|14*‘ l 14*| 14+ 22*|23" |24*|27*|29*| ‘

Faloutsos - Pavlo CMU SCS 15-415/615 121

g CMU SCS

B+ trees with duplicates

* approach#1: subtle problem with deletion:

* treat rid as part of the key, thus making it
unique

lz* | 3 | 5 | 7* ‘ |13*|14*|14*|14*‘ l 14*| 14+ 22*|23*‘ |24*|27*|29*| ‘

Faloutsos - Pavlo CMU SCS 15-415/615 122

% CMU SCS
B+ trees with duplicates

» approach#2: store each key value: once

* but store the {rid list} as variable-length
field (and use overflow pages, if needed)

([1=] [l edud [z]a] [] []>]=] |

{rid list, cont’ d}

Faloutsos - Pavlo CMU SCS 15-415/615 123

g CMU SCS

B+ trees with duplicates

& TN p LN
I I s P I A S G

{rid list, cont’ d}

Faloutsos - Pavlo CMU SCS 15-415/615 124

CMU - 15-415

31

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS

Outline
* Motivation
 [SAM
* B-trees (not in book)
¢ B+ trees

* duplicates

* B+ trees in practice
— prefix compression; bulk-loading; ‘order’

Faloutsos - Pavlo CMU SCS 15-415/615

125

g CMU SCS

Prefix Key Compression

* Important to increase fan-out. (Why?)

» Key values in index entries only "direct
traffic’ ; can often compress them.

E Papadopoulos ‘ Pernikovskaya

Faloutsos - Pavlo CMU SCS 15-415/615 126

% CMU SCS

Prefix Key Compression

 Important to increase fan-out. (Why?)

+ Key values in index entries only "direct
traffic’ ; can often compress them.

!mlw |<room for more separatorslkeys>| R

Faloutsos - Pavlo CMU SCS 15-415/615

127

CMU SCS

Bulk Loading of a B+ Tree

* In an empty tree, insert many keys
* Why not one-at-a-time?

Faloutsos - Pavlo CMU SCS 15-415/615 128

CMU - 15-415

32

Faloutsos -

Pavlo

% CMU SCS
Bulk Loading of a B+ Tree

* [Initialization: Sort all data entries

* scan list; whenever enough for a page, pack

 <repeat for upper level - even faster than
book” s algo>

Rok

Sorted pages of data entries; not yet in B+ tree

ls*‘v‘ le*‘s*‘ |1o*‘11*‘ |12*‘13*‘ lzo*‘zz*‘ |23*‘31*‘ lzs*‘ss*‘ |3a*‘41*‘ |44*‘ ‘

Faloutsos - Pavlo CMU SCS 15-415/615

129

CMU SCS 15-415/615

% CMU SCS
Bulk Loading (Contd.)

Root

*Book’ s algo

Data entry pages
*(any problems‘7) ‘2 Eﬂ not yet in B+ tree
Eﬂ []er] [rofr] [12§131 [20fz2q [es]s1] EE@

\
Root Iml.l

10 35

Data entry pages
not yet in B+ tree

[e]] 2 [2]] [38]]

Faloutsos - Pavl
aloutsos - Pavlo [3+] 4] [6°9*] [1011"] [12{13] [20]221] [23{31] [35ae mm

% CMU SCS

Outline
* Motivation
 [SAM
* B-trees (not in book)
¢ B+ trees

* duplicates

* B+ trees in practice
— prefix compression; bulk-loading; ‘order’

Faloutsos - Pavlo CMU SCS 15-415/615

131

CMU - 15-415

% CMU SCS ’
A Note on "Order

* Order (d) concept replaced by physical space
criterion in practice (‘at least half-full’).

* Why do we need the distinction?

VARCHAR| | VARCHAR

VARCHAR || VARCHAR

Faloutsos - Pavlo CMU SCS 15-415/615 132

33

Faloutsos - Pavlo

CMU SCS 15-415/615

% CMU SCS . ’
A Note on "Order

* Order (d) concept replaced by physical space
criterion in practice ("at least half-full’).

* Why do we need it?

— Index pages can typically hold many more entries
than leaf pages.

— Variable sized records and search keys mean different
nodes will contain different numbers of entries.

— Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Faloutsos - Pavlo CMU SCS 15-415/615 133

g CMU SCS . ’
A Note on 'Order

* Many real systems are even sloppier than this:
they allow underflow, and only reclaim space
when a page is completely empty.

+ (what are the benefits of such ‘slopiness’ ?)

Faloutsos - Pavlo CMU SCS 15-415/615 134

% CMU SCS

Conclusions

e B+tree is the prevailing indexing method

* Excellent, O(logN) worst-case performance
for ins/del/search; (~3-4 disk accesses in
practice)

 guaranteed 50% space utilization; avg 69%

Faloutsos - Pavlo CMU SCS 15-415/615 135

CMU - 15-415

Conclusions

* Can be used for any type of index: primary/
secondary, sparse (clustering), or dense
(non-clustering)

* Several fine-tuning extensions on the basic

algorithm

— deferred split; prefix compression; (underflows)
— bulk-loading

— duplicate handling

Faloutsos - Pavlo CMU SCS 15-415/615 136

34

