Homework 6

IMPORTANT

- Deposit hard copy of your answers in class at 3:00pm on Wednesday, 11/04/2015.
- Separate answers, as usually, i.e., please solve each of the 5 questions on a separate page, and type the usual, full information, on each page: your name, Andrew ID, course #, Homework #, and Question #.

Reminders

- Plagiarism: Homework may be discussed with other students, but all homework is to be completed individually.
- Typeset all your answers.
- Late homeworks: Follow usual policy: email late homeworks to all TAs with the subject line exactly 15-415 Homework Submission (HW 6) and the count of slip-days you are using.

For your information:

- Graded out of 100 points; 5 questions total
- Rough time estimate: ≈2-5 hours (0.5-1 hours for each question)

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Optimization</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Functional Dependencies I</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Functional Dependencies II</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Decompositions</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Normal Forms</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Question 1: Query Optimization [20 points]
GRADED BY: Anna Etzel

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: ____________________; andrew-id: ____________________; late days:

For this problem we consider the Yelp reviews database with following three tables (slightly simplified from Homework 2, for your convenience):

1. Business(bid, name, city, state), where the primary key is bid;
2. yelp_user(uid, name), where the primary key is uid;
3. Review(bid, uid, stars, date), where the primary key is (bid, uid), bid is foreign key referencing Business, and uid is foreign key referencing yelp_user.

For these tables we are given the following statistics (also, rounded-off with respect to Homework 2, for your convenience):

- Business consists of $N_1 = 60,000$ tuples, and there are:
 - $V(Business, name) = 45,000$ distinct business names.
 - $V(Business, city) = 400$ distinct cities.
 - $V(Business, state) = 30$ distinct states.
- yelp_user consists of $N_2 = 360,000$ tuples, and there are:
 - $V(yelp_user, name) = 40,000$ distinct user names.
- Review consists of $N_3 = 1,600,000$ tuples, and there are:
 - $V(Review, uid) = 360,000$ distinct uid's.
 - $V(Review, bid) = 60,000$ distinct bid's.
 - $V(Review, stars) = 5$ distinct star ratings (i.e. 1, 2, 3, 4, and 5), without nulls.

For the queries below, assume that there are no correlations between the columns of a table nor any prior knowledge about the data (i.e., assume uniform distribution). Estimate the number of resulting tuples for the query, and give the answer with *** fourth *** significant digit accuracy. We will accept either rounding half up or down, but no partial credit will be given.

(a) [2 points] SELECT * FROM Business WHERE city = 'Pittsburgh';

Solution: $N_1/V(Business, city)$

Grading info: -2 for any incorrect answer

(b) [3 points] SELECT * FROM Business WHERE state = 'PA' AND name = 'McDonald';

(b) 4.444×10^{-2}

Question 1 continues...
Solution: \(N_1/V(Business, state)/V(Business, name) \)

Grading info: -3 for any incorrect answer

(c) [3 points] SELECT * FROM Review WHERE stars > 3;

(c) \(6.400 \times 10^5 \)

Solution: \(N_3 \cdot 0.4 \)

Grading info: -1.5 for off-by-factor-of-10 error, -3 for any other incorrect answer

(d) [3 points] SELECT city, count(*) FROM Business GROUP BY city;

(d) \(400.0 \)

Solution: \(V(Business, city) \)

(e) [4 points] SELECT * FROM Business JOIN Review ON Business.bid = Review.bid WHERE state = 'PA';

(e) \(5.333 \times 10^4 \)

Solution: \(N_1 \cdot N_3/N_1/V(Business, state) \)

Grading info: -2 for off-by-factor-of-10 error, -4 for any other incorrect answer

(f) [5 points] SELECT * FROM Review as R1 JOIN Review as R2 ON R1.bid = R2.bid;

The query returns all pairs of users (and more info), that have reviewed the same business. (For your ease of computation, the query reports mirror- and self- pairs.)

(f) \(4.267 \times 10^7 \)

Solution: \(N_3 \cdot N_3/V(Review, bid) = 1,600,000 \cdot 1,600,000 / 60,000 \)

Grading info: -5 for any incorrect answer
Question 2: Functional Dependencies I [10 points]
GRADED BY: Jiaxi Xiong

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: ___________________________; andrew-id: _______________________; late days:

Consider the following legal instance of a relational schema S with attributes ABC:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Legal instance of schema S for question 2.1

(a) Which of the following dependencies are violated by the instances of S in Table 1?

i. [1 point] ■ Yes □ No : A → B is violated.
ii. [2 points] □ Yes ■ No : B → A is violated.
iii. [2 points] ■ Yes □ No : C → A is violated.
iv. [2 points] □ Yes ■ No : BC → A is violated.
v. [2 points] □ Yes ■ No : AC → B is violated.

(b) [1 point] By only observing the instance of S in Table 1 can you identify the functional dependencies that hold on schema S?

□ Yes ■ No

Solution: No, because we can only see an instance.

Homework 6 continues...
Question 3: Functional Dependencies II [20 points]
GRADED BY: Jinliang Wei

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: ____________________; andrew-id: ____________________; late days:

For the next set of questions consider the relational schema \(R = \{A, B, C, D, E, F, G, H\} \) and the set of functional dependencies FD:

\[
\begin{align*}
A & \rightarrow B \\
B & \rightarrow C \\
AD & \rightarrow CEF \\
BE & \rightarrow FG \\
CF & \rightarrow GH \\
G & \rightarrow H
\end{align*}
\]

(a) [6 points] Which of the following is a minimum cover of the FD? If none, mark accordingly, and give your own answer.

i. The given FDs (Eq 1-6), is a minimum cover already.

ii. \(\{A \rightarrow B, B \rightarrow C, AD \rightarrow E, AD \rightarrow F, BE \rightarrow F, BE \rightarrow G, CF \rightarrow G, G \rightarrow H\} \)

iii. \(\{A \rightarrow B, B \rightarrow C, AD \rightarrow E, BE \rightarrow F, CF \rightarrow G, G \rightarrow H\} \)

iv. \(\{A \rightarrow B, B \rightarrow C, AD \rightarrow E, AD \rightarrow F, BE \rightarrow F, CF \rightarrow G, G \rightarrow H\} \)

v. none of the above - the cover is ____________________

Solution: iii

(b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(6))?

i. [3 points] ■ Yes □ No : \(A \rightarrow C \)

ii. [3 points] ■ Yes □ No : \(AE \rightarrow F \)

iii. [3 points] □ Yes ■ No : \(CE \rightarrow F \)

iv. [3 points] □ Yes ■ No : \(BDE \rightarrow AG \)

(c) [1 point] True or False: The attribute closure \(\{B\}^+ \) is \(\{B, C, F\} \).

□ True ■ False

Grading info: It is \(\{B, C\} \).

(d) [1 point] True or False: The attribute closure \(\{AD\}^+ \) is \(\{A, B, C, D, E, F, G\} \).

□ True ■ False

Grading info: It is everything: \(\{A, B, \ldots, H\} \).

Homework 6 continues...
Question 4: Decompositions [20 points]
GRADED BY: Dana Van Aken

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: ___________________; andrew-id: ________________; late days:

For this set of questions, consider the relation with attributes, \(X = \{ P, Q, R, S, T \} \), Let the following functional dependencies \(FD \) be defined over the relation \(X \):

\[
P \rightarrow Q \\
Q \rightarrow R \\
S \rightarrow T
\]

(a) [2 points] Provide the attribute closure of \(\{ PS \} \).

Solution: \(\{ PS \}^+ = \{ PQRST \} \)

(b) Consider the decomposition \(PQR, ST \). Mark 'True' or 'False':

i. [1 point] □ True ■ False : It is lossless
ii. [1 point] ■ True □ False : It is dependency-preserving
iii. [2 points] □ True ■ False : All tables of the decomposition, are in 3NF or higher
iv. [2 points] □ True ■ False : All tables of the decomposition, are in BCNF

(c) Consider the decomposition \(PQ, QR, ST \). Mark 'True' or 'False':

i. [1 point] □ True ■ False : It is lossless
ii. [1 point] ■ True □ False : It is dependency-preserving
iii. [2 points] ■ True □ False : All tables of the decomposition, are in 3NF or higher
iv. [2 points] ■ True □ False : All tables of the decomposition, are in BCNF

(d) Consider the decomposition \(PQR, PS, ST \). Mark 'True' or 'False':

i. [1 point] ■ True □ False : It is lossless
ii. [1 point] ■ True □ False : It is dependency-preserving
iii. [2 points] □ True ■ False : All tables of the decomposition, are in 3NF or higher
iv. [2 points] □ True ■ False : All tables of the decomposition, are in BCNF

Homework 6 continues...
Question 5: Normal Forms [30 points]
GRADED BY: Yujing Zhang

Submit on separate page
Course: 15-415/615; HW: ; Q:
Name: __________________; andrew-id: __________________; late days:

Consider the relation with attributes, $E = \{U, V, W, X, Y, Z\}$. Suppose that the following functional dependencies hold:

$$U \rightarrow VW \quad (7)$$
$$WX \rightarrow Z \quad (8)$$
$$V \rightarrow X \quad (9)$$
$$V \rightarrow Y \quad (10)$$
$$Z \rightarrow U \quad (11)$$

(a) [6 points] List all the candidate key(s) for E. A, possibly correct, answer may be: “{UV} and {UW}”.

Solution: {U}, {Z}, {WX}, {WV}

Grading info: -2: for each missing candidate key

(b) [2 points] Is the relation E in BCNF?

- □ Yes
- ■ No

(c) [3 points] Justify: Explain why E is (or is not) in BCNF. Your answer should follow the style, e.g.: “all FDs follow the rules of BCNF” or “FD (11) violates the rules: ‘Z’ is a determinant, but not a candidate key”

Solution: V is a determinant, but not a candidate key.

(d) [2 points] Is the relation E in 3NF?

- □ Yes
- ■ No

(e) [3 points] Justify: Explain why E is (or is not) in 3NF. Follow the style that we mentioned above.

Solution: Y depends transitively on the candidate key U - alternatively, for the FD (Eq[10] $(V \rightarrow Y)$: V is a determinant, but not a candidate key, and Y is not part of a candidate key.

(f) [6 points] Give a 3NF decomposition of E that is lossless, dependency preserving, and has as few tables as possible.

Solution: $E_1=(U, V, W, X, Z)$, and $E_2=(V, Y)$.

Grading info: -3: 3NF decomposition with 3 tables; -4: 3NF decomposition with more than 3 tables

(g) [8 points] Give a BCNF decomposition of E that is lossless, and has as few tables as possible.

Question 5 continues...
Solution: $\mathcal{E}_1=(U, V, W, Z)$, $\mathcal{E}_2=(V, X, Y)$.

or $\mathcal{E}_{1,1}=(U, V, W, Z)$, $\mathcal{E}_{1,2}=(V, X)$, $\mathcal{E}_2=(V, Y)$ (We accept this answer)

Grading info: -3: BCNF decomposition with 3 tables; -5: BCNF decomposition with more than 3 tables