CARNEGIE MELLON UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE 15-415/615- DATABASE APPLICATIONS C. FALOUTSOS & A. PAVLO, FALL 2015 PREPARED BY YUJING ZHANG DUE DATE: Wednesday, 11/04/2015, 3:00pm

Homework 6

IMPORTANT

- Deposit hard copy of your answers in class at 3:00 pm on Wednesday, 11/04/2015.
- Separate answers, as usually, i.e., please solve each of the 5 questions on a **separate** page, and type the usual, full information, on each page: your **name**, **Andrew ID**, **course** # , **Homework** # , and **Question** # .

Reminders

- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- **Typeset** all your answers.
- Late homeworks: Follow usual policy: email late homeworks
 - to all TAs
 - with the subject line exactly 15-415 Homework Submission (HW 6)
 - and the count of slip-days you are using.

For your information:

- Graded out of **100** points; **5** questions total
- Rough time estimate: $\approx 2-5$ hours (0.5-1 hours for each question)

Revision: 2015/11/02 13:58

Question	Points	Score
Query Optimization	20	
Functional Dependencies I	10	
Functional Dependencies II	20	
Decompositions	20	
Normal Forms	30	
Total:	100	

For this problem we consider the yelp reviews database with following three tables (slightly simplified from Homework 2, for your convenience):

- 1. Business(bid, name, city, state), where the primary key is bid;
- 2. yelp_user(uid, name), where the primary key is uid;
- 3. Review(bid, uid, stars, date), where the primary key is (bid, uid), bid is foreign key referencing Business, and uid is foreign key referencing yelp_user.

For these tables we are given the following statistics (also, rounded-off with respect to Homework 2, for your convenience):

- Business consists of $N_1 = 60,000$ tuples, and there are:
 - -V(Business, name) = 45,000 distinct business names.
 - V(Business, city) = 400 distinct cities.
 - -V(Business, state) = 30 distinct states.
- yelp_user consists of $N_2 = 360,000$ tuples, and there are: - $V(yelp_user,name) = 40,000$ distinct user names.
- Review consists of $N_3 = 1,600,000$ tuples, and there are:
 - V(Review,uid) = 360,000 distinct uid's.
 - V(Review, bid) = 60,000 distinct bid's.
 - -V(Review, stars) = 5 distinct star ratings (i.e. 1, 2, 3, 4, and 5), without nulls.

For the queries below, assume that there are no correlations between the columns of a table nor any prior knowledge about the data (i.e., assume uniform distribution). Estimate the number of resulting tuples for the query, and give the answer with ******* fourth ******* significant digit accuracy. We will accept either rounding half up or down, but no partial credit will be given.

(a) [2 points] SELECT * FROM Business WHERE city = 'Pittsburgh';

(a) _____

(b) [3 points] SELECT * FROM Business WHERE state = 'PA' AND name = 'McDonald';

(b) _____

(c) [3 points] SELECT * FROM Review WHERE stars > 3;

(c) _____

(d) [3 points] SELECT city, count(*) FROM Business GROUP BY city;

(d) _____

(e) [4 points] SELECT * FROM Business JOIN Review ON Business.bid = Review.bid WHERE state = 'PA';

(e) _____

(f) [5 points] SELECT * FROM Review as R1 JOIN Review as R2 ON R1.bid = R2.bid;

The query returns all pairs of **users** (and more info), that have reviewed the same business. (For your ease of computation, the query reports mirror- and self- pairs.)

(f) _____

Consider the following legal instance of a relational schema S with attributes ABC:

\mathbf{S}	А	В	С
	a	1	Х
	b	2	Y
	b	2	Y
	b	3	Х

Table 1: Legal instance of schema S for question 2.1

- (a) Which of the following dependencies are *violated* by the instances of S in Table 1?
 - i. [1 point] \Box Yes \Box No : $A \rightarrow B$ is violated.
 - ii. [2 points] \Box Yes \Box No : $B \to A$ is violated.
 - iii. [2 points] \Box Yes \Box No : $C \to A$ is violated.
 - iv. [2 points] \Box Yes \Box No : $BC \to A$ is violated.
 - v. [2 points] \Box Yes \Box No : $AC \rightarrow B$ is violated.
- (b) [1 point] By only observing the instance of S in Table 1, can you identify the functional dependencies that hold on schema S?
 - \Box Yes \Box No

For the next set of questions consider the relational schema $\mathcal{R} = \{A, B, C, D, E, F, G, H\}$ and the set of functional dependencies FD:

$$A \rightarrow B$$
 (1)

$$B \rightarrow C$$
 (2)

$$AD \rightarrow CEF$$
 (3)

$$BE \rightarrow FG$$
 (4)

$$CF \rightarrow GH$$
 (5)

$$G \rightarrow H$$
 (6)

- (a) **[6 points]** Which of the following is a minimum cover of the FD? If none, mark accordingly, and give your *own* answer.
 - i. The given FDs (Eq 1-6), is a minimum cover already.
 - ii. $\{A \rightarrow B, B \rightarrow C, AD \rightarrow E, AD \rightarrow F, BE \rightarrow F, BE \rightarrow G, CF \rightarrow G, G \rightarrow H\}$
 - iii. $\{A \to B, B \to C, AD \to E, BE \to F, CF \to G, G \to H\}$
 - iv. $\{A \to B, B \to C, AD \to E, AD \to F, BE \to F, CF \to G, G \to H\}$
 - v. none of the above the cover is _____
- (b) Yes/No: Which of the following functional dependencies can be deduced, from the above set of functional dependencies (Eq. (1)-(6))?
 - i. [3 points] \Box Yes \Box No : $A \to C$
 - ii. [3 points] \Box Yes \Box No : $AE \to F$
 - iii. [3 points] \Box Yes \Box No : $CE \to F$
 - iv. [3 points] \Box Yes \Box No : $BDE \rightarrow AG$
- (c) [1 point] True or False: The attribute closure $\{B\}^+$ is $\{B, C, F\}$. \Box True \Box False
- (d) **[1 point]** True or False: The attribute closure $\{AD\}^+$ is $\{A, B, C, D, E, F, G\}$. \Box True \Box False

For this set of questions, consider the relation with attributes, $\mathcal{X} = \{P, Q, R, S, T\}$, Let the following functional dependencies FD be defined over the relation \mathcal{X} :

$$P \to Q$$
$$Q \to R$$
$$S \to T$$

- (a) [2 points] Provide the attribute closure of $\{PS\}$.
- (b) Consider the decomposition PQR, ST. Mark 'True' or 'False':
 - i. $[1 \text{ point}] \square$ True \square False : It is lossless
 - ii. [1 point] \Box True \Box False : It is dependency-preserving
 - iii. $[2 \text{ points}] \square$ True \square False : All tables of the decomposition, are in 3NF or higher
 - iv. $[2 \text{ points}] \square$ True \square False : All tables of the decomposition, are in BCNF
- (c) Consider the decomposition PQ, QR, ST. Mark 'True' or 'False':
 - i. [1 point] \Box True \Box False : It is lossless
 - ii. $[1 \text{ point}] \square$ True \square False : It is dependency-preserving
 - iii. [2 points] □ True □ False : All tables of the decomposition, are in 3NF or higher
 - iv. $[2 \text{ points}] \square$ True \square False : All tables of the decomposition, are in BCNF
- (d) Consider the decomposition PQR, PS, ST. Mark 'True' or 'False':
 - i. [1 point] \Box True \Box False : It is lossless
 - ii. $[1 \text{ point}] \square$ True \square False : It is dependency-preserving
 - iii. [2 points] □ True □ False : All tables of the decomposition, are in 3NF or higher
 - iv. [2 points] \Box True \Box False : All tables of the decomposition, are in BCNF

Question 5: Normal Forms [30 points] Submit on separate page [30 points] Course: 15-415/615; HW: ; Q: Name: _____; andrew-id: _____; late days:

Consider the relation with attributes, $\mathcal{E} = \{U, V, W, X, Y, Z\}$. Suppose that the following functional dependencies hold:

$$U \rightarrow VW$$
 (7)

$$WX \rightarrow Z$$
 (8)

$$V \rightarrow X$$
 (9)

$$V \rightarrow Y$$
 (10)

$$Z \rightarrow U$$
 (11)

- (a) [6 points] List all the candidate key(s) for \mathcal{E} . A, possibly correct, answer may be: "{UV} and {UW}".
- (b) [2 points] Is the relation \mathcal{E} in BCNF? \Box Yes \Box No
- (c) [3 points] Justify: Explain why \mathcal{E} is (or is not) in BCNF. Your answer should follow the style, e.g.: "all FDs follow the rules of BCNF" or "FD (11) violates the rules: 'Z' is a determinant, but not a candidate key"
- (d) [2 points] Is the relation \mathcal{E} in 3NF? \Box Yes \Box No
- (e) [3 points] Justify: Explain why \mathcal{E} is (or is not) in 3NF. Follow the style that we mentioned above.
- (f) [6 points] Give a 3NF decomposition of \mathcal{E} that is lossless, dependency preserving, and has as few tables as possible.
- (g) [8 points] Give a BCNF decomposition of \mathcal{E} that is lossless, and has as few tables as possible.