CARNEGIE MELLON UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
15-415/615 - DATABASE APPLICATIONS
C. FaLoutsos & A. PavLo, FaLL 2015

Homework 3 (by Anna Etzel)
Due: hard and e-copy at 3:00pm, on Wednesday, Oct. 7

VERY IMPORTANT: Deposit hard copy of your answers and a hard copy of any
new or modified code, and also submit a tar-file ([andrew-id]-HW3.tar.gz) of your code
on Blackboard. For ease of grading, please

1. Separate your answers, on different pages for each question (staple additional pages,

if needed).

2. Type the full info on each page: your name, Andrew ID, course#, Homework#,

Question# on each of the 1 pages.

3. Check that running make compiles the code that you submit and that it passes all the

tests.

Reminders:
e Platform: We will run and grade your program on the andrew linux machines.
e Plagiarism: Homework is to be completed individually.
Typeset all of your answers whenever possible. Illegible handwriting may get zero
points, at the discretion of the graders.
Late homeworks: in that case, please email it
— to all TAs
— with the subject line exactly 15-415 Homework Submission (HW 3)
— and the count of slip-days you are using.
For your information:
e Graded out of 100 points; 1 questions total
e Rough time estimate: approz. 15-20 hours - be sure to start early

Revision : 2015/09/27 12:03

Question Points | Score

Prefix Bracket Search in a B+ Tree 100
Total: 100

15-415/615 Homework 3 , Page 2 of 9 DUE: Oct. 7, 3:00pm

1 Preliminaries - Our B+ Tree Implementation

The goal of this assignment is to make you more familiar with the B4+ Tree data structure,
especially the traversal and search functionalities.

Specifically, you are given a basic B4 Tree implementation and you are asked to extend it
by implementing some new operations/functions, which we list later (see bottom of Table .

1.1 Where to Find Makefiles, Code, etc.

Thefileisat http://www.cs.cmu.edu/~christos/courses/dbms.F15/hws/HW3/btree.tar.
gz

Quick-start guide:
1. G-unzip and untar the file.
2. make load # compiles everything and loads the data files
3. ./main # to try out the program - e.g. S alex
4. make # like load, but it also runs tests - only the first test succeeds, on purpose
5. make test_search # the first test - should always work

Explanations

e make load inserts the entire collection of documents (actually, a dictionary, split into
thousands of files). Then, you can search for the key, say “alex”, and see the contents
of the documents containing the search key.

e make runs some tests against the code, and compares (diff) the output against the
correct output. When your code is implemented correctly, then make should report all
tests as successful.

e make test_search runs the very first test, which should pass out-of-the-box.

1.2 Description of the provided B+ tree package

The specifications of the provided implementation are:

1. It creates an “inverted index” in alphabetical order in the form of a B+ tree over a
given corpus of text documents.

2. It supports the operations that are not marked unimplemented in Table

3. No duplicate keys are allowed in the tree. FYI: It uses a variation of “Alternative 3”
and stores a postings list for each word that appears many times.

4. Tt does not support deletions.

5. The tree is stored on disk, since it is persistent.

The directory structure and contents are as follows:
e DOC: contains useful documentation of the code.

e SRC: the source code.

Homework 3 continues. ..

http://www.cs.cmu.edu/~christos/courses/dbms.F15/hws/HW3/btree.tar.gz
http://www.cs.cmu.edu/~christos/courses/dbms.F15/hws/HW3/btree.tar.gz

15-415/615

Homework 3 | Page 3 of 9 DUE: Oct. 7, 3:00pm

e Datafiles: data documents, to insert to the tree.

e Tests: some sample tests and their solutions.

e Some other useful files, e.g., README, makefile etc.

e IMPORTANT: Make sure you do not delete the files B-TREE_FILE, POSTINGSFILE,
TEXTFILE, parms - they are created by the B+ tree implementation, they should be in
the same directory as ./main, and they are necessary to make the B+ tree persistent.

The main program file is called “main.c”. It waits for the user to enter commands and
responds to them as shown in Table

ARGUMENT

EFFECT

C

Prints all the keys that are present in the tree, in ascending lexicographical
order.

i arg

The program parses the text in arg which is a text file, and inserts the
uncommon words (i.e., words not present in “comwords.h”) into the B+
tree. More specifically, the uncommon words of arg make the “keys” of the
B+ tree, and the value for all these keys is set to arg. Since this tree enables
us to find which words are present in which documents, it is known as the
inverted index.

p arg

Prints the keys in a particular page of the B+ tree where arg is the page
number. It also prints some statistics about the page such as the number of
bytes occcupied, the number of keys in the page, etc.

s key

searches the tree for key (which is a single word). If the key is found, the
program prints “Found the key!”. If not, it prints “Key not found!”.

Searches the tree for key. If the key is found, the program prints the docu-
ments in which the key is present, also known as the posting list of key. If
not, it prints “Key not found!”.

preTty-prints the tree. If the tree is empty, it prints “Tree empty!” instead.

exit

[Not implemented yet] prints and resets the counter for the number of
FetchPage calls

1 key

[Not implemented yet] finds and prints the next sequential key in B+ tree
which does not have the given key as a prefix

[key

[Not implemented yet]| finds and prints the previous sequential key in the
B+ tree which does not have the given key as a prefix

Table 1: B+ tree command interface - the last 3 commands are to be implemented

Homework 3 continues. ..

15-415/615 Homework 3 , Page 4 of 9 DUE: Oct. 7, 3:00pm

2 Your tasks

Your task is to implement the last three commands shown in Table[I] Their detailed behavior
is as follows:

#
Prints and resets the number of page fetches (from disk) in the current program. Specif-
ically it means the number of FetchPage function calls. (We need it for debugging
and grading, to make sure the code avoids needless sequential scans).

1 key
Search for the ‘right bracket’ of key, the first key that follows the given key in the B+
tree which does not have key as a prefix. If no such key is found (for example, if the
last key in the B+ tree has this prefix or this prefix is lexicographically after all keys
in the B+ tree), *NONE* should be returned.

[key

Search for the ‘left bracket’ of key, the first key that precedes the given key in the B+
tree which does not have key as a prefix. If no such key is found (for example, if the
first key in the B+ tree has this prefix or this prefix is lexicographically before all keys
in the B+ tree), *NONE™* should be returned.

2.1 Details

e Efficiency: Your code should not resort to sequential scanning - that is, it should
require way less than L leaf accesses, where L is the number of leaves of the B+ tree
(= 70,000, in our setting).

e More examples: The correct responses for some additional queries are in Table

e Rudimentary testing: Running make test_sanity will do a minimal “sanity check”
of your code on a few queries, and diff its results with the correct ones.

e Additional testing: Passing the few supplied tests of make test_sanity, is neces-
sary, but not sufficient, for a good grade - please make sure you do your own, additional
testing, for as many corner cases as you can think: empty tree, search key out of range,
ete.

e Page count: we will allow for variations for the page count results, as long as the
code is faster than linear (O(N)). That is, it does not do needless sequential scans.

Homework 3 continues. ..

15-415/615

Homework 3 | Page 5 of 9 DUE: Oct. 7, 3:00pm

Question 1: Prefix Bracket Search in a B+ Tree.... [100 points]
For the following list of questions, run your code to find the answers and put your
responses in the hard copy you turn in. The first four questions have the same six-part
format and only differ by the search key (database, comb, etc). Please make sure you
use the same dataset and parms file as in the provided tar-file.

Questions about the number of pages read are not graded against an exact value. These
questions are meant to check that you are not scanning through the B+ tree sequentially
to find the correct output.

(a) For the key database answer the following questions:

1.
1i.

iii.

1v.

vi.

[1 point] Does the word exist in the document (using the command s key)?
[1 point] How many pages are read in order to see if the word is in the tree?
[4 points] What is the right bracket of the key in the tree, sorted lexicograph-
ically?

[2 points] How many pages are read in order to fetch this? (There is not just
one correct answer for this, a range of values are accepted.)

[5 points] What is the left bracket of the key in the tree, sorted lexicograph-
ically?

[2 points] How many pages are read in order to fetch this? (There is not just
one correct answer for this, a range of values are accepted.)

(b) For the key comb answer the following questions:

i.
ii.

111.

1v.

vi.

[1 point] Does the word exist in the document (using the command s key)?
[1 point] How many pages are read in order to see if the word is in the tree?
[4 points] What is the right bracket of the key in the tree, sorted lexicograph-
ically?

[2 points] How many pages are read in order to fetch this? (There is not just
one correct answer for this, a range of values are accepted.)

[5 points] What is the left bracket of the key in the tree, sorted lexicograph-
ically?

[2 points] How many pages are read in order to fetch this? (There is not just
one correct answer for this, a range of values are accepted.)

(c) For the key h answer the following questions:

1.
ii.

111

1v.

[1 point] Does the word exist in the document (using the command s key)?
[1 point] How many pages are read in order to see if the word is in the tree?
[4 points] What is the right bracket of the key in the tree, sorted lexicograph-
ically?

[2 points] How many pages are read in order to fetch this? (There is not just
one correct answer for this, a range of values are accepted.)

[5 points] What is the left bracket of the key in the tree, sorted lexicograph-
ically?

Question 1 continues. . .

15-415/615 Homework 3 , Page 6 of 9 DUE: Oct. 7, 3:00pm

(d)

vi. [2 points] How many pages are read in order to fetch this? (There is not just
one correct answer for this, a range of values are accepted.)

For the key zu answer the following questions:

i. [1 point] Does the word exist in the document (using the command s key)?

i. [1 point] How many pages are read in order to see if the word is in the tree?

i. [4 points] What is the right bracket of the key in the tree, sorted lexicograph-
ically?

—e

—

i

iv. [2 points] How many pages are read in order to fetch this? (There is not just
one correct answer for this, a range of values are accepted.)

v. [5 points] What is the left bracket of the key in the tree, sorted lexicograph-
ically?

vi. [2 points] How many pages are read in order to fetch this? (There is not just
one correct answer for this, a range of values are accepted.)

[40 points] We will test your code on several “secret” settings, which we will
publish after the due date. Test for as many corner cases as you can, to get full
points here.

Question 1 continues. . .

15-415/615 Homework 3 , Page 7 of 9

DUE: Oct. 7, 3:00pm

S dragon 1 dragon [dragon

enter search-word: word="? word="?

% Searching for word dragon | Right bracket of dragon: Left bracket of dragon:
found in dragon dragoon dragomanish

——————— document #1----- # #

colarin
hypopepsinia
chloroacetic
hydnocarpate
wickiup

dragon
spermoviduct
simoleon
zorilla
backbiter

drib

capsuler

coapt
preservability
certainly
dextrotropous
agricultural
polymorphy
ancienty
necrobacillary
waivery
rebringer
baillone
maigre
tenonectomy

#

of reads on B-tree: 11

of reads on B-tree: 18

of reads on B-tree: 14

(a)

(b)

()

Table 2: Example responses, to additional test queries: (a) ‘S’ for ‘search for word’; (b) ‘]’ for
‘right bracket of prefix’, and (c) ‘[’ for ‘left bracket of prefix’. The search and bracket queries
should give the exact responses shown. However, the number-of-read responses to the left
and right bracket queries are not the exact ones required, as the amount is implementation

specific.

Question 1 continues. . .

15-415/615 Homework 3 , Page 8 of 9 DUE: Oct. 7, 3:00pm

2.2 Clarifications/Hints

e Your implementation should be case insensitive. All keys are inserted after converting
them to lower case.

e Make sure all searches are only for alphanumeric strings.

o Rudimentary testing: running make or make test_sanity should return success.
make test_sanity tests your implementation for the] and [commands. If diff is
empty for both of them, then your implementation passes the provided tests. Please
refrain from changing these tests as they serve as a check-point for the expected output
format.

Hints, and optional information:
e For your convenience, we have provided the following place-holder files:
— stats.c
— get_rightbracket.c
— get_leftbracket.c
o Hint: Implementing get rightbracket.c may be easier than get leftbracket.c.
e We recommend the use of source code version control tools, like 'git’, 'mercurial’, or
‘svn’.
e For your convenience, we have also provided you with most of the queries, for the ques-
tions above (database etc). Within the Tests/ directory, check test_rightbracket.inp
and test_leftbracket.inp. Feel free to modify those input files, if you want to au-

tomate the generation of your answers for the hard-copy deliverable.

3 Testing and Grading
We will test your submission for correctness using scripts, and also look through your code.

Correctness. As we said earlier, an easy, minimal check would be using make test_sanity.
Your code should pass this. However, please make sure you test your code on additional
settings, of your own. Consider corner cases (empty tree, invalid inputs, non-existent
words/prefixes, etc.). As mentioned, we will use several, additional, “secret” test cases
to grade your code.

Output Format. If make test_sanity is successful, you have the right output format.

Code. We will check the functions that you created/modified to support the required op-
erations (e.g., stats.c, etc).

Question 1 continues. . .

15-415/615 Homework 3 , Page 9 of 9 DUE: Oct. 7, 3:00pm

4 What to hand-in

As we said in the front page, we want both a hard copy of the changed functions; and a
tar-file with everything we need to run our tests.
1. Hard copy: in class, please submit
(a) your answers to the questions listed, and
(b) all the changes that you made to the source code.
Please hand-in only the functions that you added / changed.
2. Online:
e Create [your-andrew-id]-HW3.tar.gz, a (compressed) tar file of your complete
source code including only and all the necessary files, as well as the makefile
(i.e., exclude *.0 *.out etc files);
e Submit your tar file via blackboard, under Assignments / Homework 3.
For your convenience, make handin automates the collection of deliverables. However, it is
your responsibility to make sure everything is included properly.

End of Homework 3

	Preliminaries - Our B+ Tree Implementation
	Where to Find Makefiles, Code, etc.
	Description of the provided B+ tree package

	Your tasks
	Details
	Clarifications/Hints

	Testing and Grading
	What to hand-in

